而Tn?Tn?1?4?又
n?2n?1n?(4?)?(n?2) n?1n?2n?1222n?0??Tn?单调递增 2n?1n?N??Tn?Tn?1?n为偶数时:??(Tn)min?T2?2
n为奇数时:(-1)??(Tn)min?T1?1即???1
综上?的取值范围为:?1???2
19..解:(Ⅰ)M(?a,0),N(0,b),kMN?b1?, a2b23?e?1?2?
a2(Ⅱ)(i)方法一:
x2y2设A(x1,y1),C(x2,y2),椭圆方程为2?2?1,线段AC中点为Q,
4bb1?y?x?m??x2?2mx?2m2?2b2?0 则?2?x2?4y2?4b2??=8b2?4m2?0
x1?x2??2m,x1x2?2m2?2b2
1AC?1?()2(x1?x2)2?4x1x2?52b2?m2 2?BQ?15AC?2b2?m2 22P(0,m),Q(?m,5mm )PQ?225555222Rt?BQP中,BP?BQ?PQ?(2b2?m2)?(m2)?b2?
4422x2?b?1?椭圆方程为:?y2?1
42(Ⅱ)(i)方法二:
x2y2设A(x1,y1),C(x2,y2),椭圆方程为2?2?1,线段AC中点为Q,
4bb1??y?x?m?x2?2mx?2m2?2b2?0 则?2?x2?4y2?4b2??=8b2?4m2?0
12(m?b2) 2x1?x2??2m,x1x2?2m2?2b2y1?y2?m,y1y2?Q(?m,m33)kBD??2?lBD:y??2x?m设B(x0,y0)y0??2x0?m又P(0,m) 222255510?BP?x02?(?2x0?m)2?即5x02?10mx0?m2??0①
2242又BA?BC?BA?BC?0即(x2?x0)(x1?x0)?(y2?y0)(y1?y0)?0
22 化简为:x1x2?x0(x1?x2)?x0?y1y2?y0(y1?y2)?y0?0
代入整理得5x02?10mx0?25252m?b?0② 42x2由①②可得b?1?椭圆方程为:?y2?1
42(ii)lMN:y?2m?111x?1,lAC:y?x?m?AE? 225又1222AC?52?m2?EC?AE?AC??(21m2?8m?54)
54时,使得EC最长,此时使得?>0成立。 2114x? 2212?当m=-?直线AC的方程为y?20.解:(1)当a?1时,f(x)?2lnx?x,定义域为(0,??).
f'(x)?22(1?x)(1?x)?2x?,令f'(x)?0,则x?1, xx∵x?(0,1)时,f'(x)?0;x?(1,??)时,f'(x)?0, ∴x?1时,f(x)极大值?f(1)??1;无极小值.
(2)令F(x)?g(x)?f(x)?2x3?2lnx?ax2,由题意,函数f(x)的图象始终在函数g(x)?2x3图象的下方,等价于F(x)?0在(0,??)恒成立,即2x3?ax2?2lnx?0恒成立,得到
a?(2lnx?2x)max(x?(0,??)). x22?4lnx2?2x3?4lnx2lnx?2?令h(x)?2?2x(x?0),h'(x)?, 3xx3x显然h'(1)?0,又函数y?2?2x3?4lnx在(0,??)上单调递减; 所以当x?(0,1)时,h'(x)?0;x?(1,??)时,h'(x)?0, 则h(x)?h(1)??2,因此a??2, 所以a?(?2,??).