»¶ÓÔĶÁ
¡ì2.7 Õý̬·Ö²¼
1 Ëæ»ú±äÁ¿X¡«N (3, 4), (1) Çó P(2 2 ij²úÆ·µÄÖÊÁ¿Ö¸±êX·þ´ÓÕý̬·Ö²¼£¬¦Ì=160£¬ÈôÒªÇóP(120 ¡ì2.8 Ëæ»ú±äÁ¿º¯ÊýµÄ·Ö²¼ 1ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪ£» X 0 1 2 p 0.3 0.4 0.3 Y = 2X ¨C 1, ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉ¡£ ?2(1?x)0?x?12ÉèËæ»ú±äÁ¿XµÄÃܶȺ¯ÊýΪ£ºf(x)??£¬ 0ÆäËû?Y?X2£»ÇóËæ»ú±äÁ¿YµÄÃܶȺ¯Êý¡£ 3. ÉèËæ»ú±äÁ¿X·þ´Ó£¨0£¬ 1£©ÉϵľùÔÈ·Ö²¼£¬Y??2lnX £¬ÇóËæ»ú±äÁ¿YµÄÃܶȺ¯Êý¡£ µÚ2ÕÂ×÷Òµ´ð°¸ ¡ì2.1 1£º X 3 4 5 p 0.1 0.3 0.6 2£º X 1 2 3 4 5 p 0.4 0.6¡Á0.4 0.6¡Á0.6¡Á0.4 0.6¡Á0.6¡Á0.6¡Á0.4 0.6¡Á0.6¡Á0.6¡Á0.6¡Á1 ¡ì2.2 1£º (1) P(X = 1) = P(X¡Ý1) ¨C P(X¡Ý2) = 0.981684 ¨C 0.908422 = 0.073262, (2) P(X¡Ý1) = 0.981684, (3) P(X¡Ü1) = 1 - P(X¡Ý2) = 1 ¨C 0.908422 = 0.091578¡£ 2£º(1) Óɳ˷¨¹«Ê½£º P(X=2,Y¡Ü2) = P(X=2) P(Y¡Ü2 | X=2)= 0.4¡Á (e?2?2e?2?2e?2)= 2e?2 £¨2£©ÓÉÈ«¸ÅÂʹ«Ê½£ºP(Y¡Ü2) = P(X=2) P(Y¡Ü2 | X=2) + P(X=3) P(Y¡Ü2 | X=3) 17= 0.4¡Á5e?2 + 0.6¡Áe?3= 0.27067 + 0.25391 = 0.52458 2£¨3£©Óɱ´Ò¶Ë¹¹«Ê½£ºP(X=2|Y¡Ü2)= P(X?2,Y?2)0.27067??0.516 P(Y?2)0.52458»¶ÓÔĶÁ ¡ì2.3 1£º ÉèX±íʾÔÚͬһʱ¿Ì±»Ê¹ÓõĄ̈Êý£¬Ôò X ¡«B(5, 0.6), 30.630.42?C540.640.4?0.65 (1) P( X = 2 ) = C520.620.43 (2) P(X ¡Ý3 ) = C5 (3) P(X ¡Ü3 ) = 1 - C540.640.4?0.65 (4)P(X ¡Ý1 ) = 1 - 0.45 2£º ÖÁÉÙ±ØÐë½øÐÐ11´Î¶ÀÁ¢Éä»÷. ¡ì2.4 1£º£¨1£©P(X¡Ü0 )=0.5£» P ?0?X?1? = 0.5£»P(X¡Ý1) = 0.5£¬ (2) XµÄ·Ö²¼ÂÉΪ£º X -1 1 P 0.5 0.5 2£º (1) A = 1, (2) P?1?X?2? =1/6 ?0?¡ì2.5 1£º£¨1£©k?2£¬£¨2£©F(x)??x2?1?x?00?x?1£» x?100.5?0.50£¨3£©P(- 0.5 y?0y?0£» µÚ3Õ ¶àÎ¬Ëæ»ú±äÁ¿ ¡ì3.1 ¶þάÀëÉ¢ÐÍËæ»ú±äÁ¿ 1. ÉèºÐ×ÓÖÐÓÐ2¸öºìÇò£¬2¸ö°×Çò£¬1¸öºÚÇò£¬´ÓÖÐËæ»úµØÈ¡3¸ö£¬ÓÃX±íʾȡµ½µÄºìÇò¸öÊý£¬ÓÃY±íʾȡµ½µÄ°×Çò¸öÊý£¬Ð´³ö (X, Y) µÄÁªºÏ·Ö²¼Âɼ°±ßÔµ·Ö²¼ÂÉ¡£ 2. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄÁªºÏ·Ö²¼ÂÉΪ£º X Y 0 1 2 ÊÔ¸ùé§ÏÂÁÐÌõ¼þ·Ö±ðÇóaºÍbµÄÖµ£» 0 0.1 0.2 a (1)P(X?1)?0.6£» 1 0.1 b 0.2 »¶ÓÔĶÁ (2)P(X?1|Y?2)?0.5£» (3)ÉèF(x)ÊÇYµÄ·Ö²¼º¯Êý£¬F(1.5)?0.5¡£ ¡ì3.2 ¶þάÁ¬ÐøÐÍËæ»ú±äÁ¿ ?k(x?y)0?x?1,0?y?11. (X¡¢Y)µÄÁªºÏÃܶȺ¯ÊýΪ£ºf(x,y)?? ÆäËû?0Çó£¨1£©³£Êýk£»£¨2£©P(X<1/2,Y<1/2)£»(3) P(X+Y<1)£»(4) P(X<1/2)¡£ ?kxy0?x?1,0?y?x2£®(X¡¢Y)µÄÁªºÏÃܶȺ¯ÊýΪ£ºf(x,y)?? 0ÆäËû?Çó£¨1£©³£Êýk£»£¨2£©P(X+Y<1)£»(3) P(X<1/2)¡£ ¡ì3.3 ±ßÔµÃܶȺ¯Êý 1. Éè(X, Y) µÄÁªºÏÃܶȺ¯ÊýÈçÏ£¬·Ö±ðÇóXÓëYµÄ±ßÔµÃܶȺ¯Êý¡£ f(x,y)?1?2(1?x2)(1?y2)???x???,???y??? 2. Éè(X, Y) µÄÁªºÏÃܶȺ¯ÊýÈçÏ£¬·Ö±ðÇóXÓëYµÄ±ßÔµÃܶȺ¯Êý¡£ ?e?x f(x,y)???0 0?y?x ÆäËû¡ì3.4 Ëæ»ú±äÁ¿µÄ¶ÀÁ¢ÐÔ 1. (X, Y) µÄÁªºÏ·Ö²¼ÂÉÈçÏ£¬ X Y 1 2 3 ÊÔ¸ùé§ÏÂÁÐÌõ¼þ·Ö±ðÇóaºÍbµÄÖµ£» 1 1/6 1/9 1/18 (1) P(Y?1)?1/3£» 2 a b 1/9 (2) P(X?1|Y?2)?0.5£» £¨3£©ÒÑÖªXÓëYÏ໥¶ÀÁ¢¡£ 2. (X,Y) µÄÁªºÏÃܶȺ¯ÊýÈçÏ£¬Çó³£Êýc£¬²¢ÌÖÂÛXÓëYÊÇ·ñÏ໥¶ÀÁ¢£¿ ?cxy20?x?1,0?y?1 f(x,y)?? ÆäËû?0 »¶ÓÔĶÁ µÚ3ÕÂ×÷Òµ´ð°¸ ¡ì3.1 1£º X Y 1 2 2£º (1) a=0.1 b=0.3 1 0.4 0.3 0.7 (2) a=0.2 b=0.2 2 0.3 0. 0.3 (3) a=0.3 b=0.1 0.7 0.3 1 ¡ì3.2 1£º(1) k = 1£»(2) P(X<1/2, Y<1/2) = 1/8£»(3) P(X+Y<1) = 1/3£»(4) P(X<1/2) = 3/8¡£ 2£º(1) k = 8£»(2) P(X+Y<1) = 1/6£»(3) P(X<1/2) = 1/16¡£ ¡ì3.3 1£º fX(x)??fY(y)??12dy????2(1?x2)(1?y2)?(1?x2)?????x???£» ????21?(1?x)(1?y)x?022dx?2?(1?y2)???y???£» ?xe?x 2£º fX(x)???0?e?y£» fY(y)??x?0?0y?0y?0£» ¡ì3.4 1£º £¨1£©a=1/6 b=7/18£» (2) a=4/9 b=1/9£»£¨3£©a = 1/3, b = 2/9¡£ 2£º c = 6, XÓëYÏ໥¶ÀÁ¢¡£ µÚ4ÕÂ Ëæ»ú±äÁ¿µÄÊý×ÖÌØÕ÷ ¡ì4.1 ÊýѧÆÚÍû 1£®ºÐÖÐÓÐ5¸öÇò£¬ÆäÖÐ2¸öºìÇò£¬Ëæ»úµØÈ¡3¸ö£¬ÓÃX±íʾȡµ½µÄºìÇòµÄ¸öÊý£¬ÔòEXÊÇ£º £¨A£©1£» £¨B£©1.2£» £¨C£©1.5£» £¨D£©2. ?3x22?x?41?2. ÉèXÓÐÃܶȺ¯Êý£ºf(x)??8 , ÇóE(X),E(2X?1),E(2),²¢ÇóX´óÓÚÊýѧÆÚÍûÆäËûX?0?E(X)µÄ¸ÅÂÊ¡£ 3. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄÁªºÏ·Ö²¼ÂÉΪ£º X Y 0 1 2 ÒÑÖªE(XY)?0.65£¬ 0 0.1 0.2 a ÔòaºÍbµÄÖµÊÇ£º 1 0.1 b 0.2 £¨A£©a=0.1, b=0.3£» £¨B£©a=0.3, b=0.1£» £¨C£©a=0.2, b=0.2£» £¨D£©a=0.15, b=0.25¡£ 4£®ÉèËæ»ú±äÁ¿ (X, Y) µÄÁªºÏÃܶȺ¯ÊýÈçÏ£ºÇóEX,EY,E(XY?1)¡£ ?xy0?x?1,0?y?2 f(x,y)?? 0ÆäËû?