2016-2017学年山东省济南市历城区八年级(下)期末数学试卷 下载本文

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

26.(12分)在△ABC中,AB=AC,点D为直线BC上一动点(点D不与B、C重合)以AD为边作正方形ADEF,使∠DAF=∠BAC,连接CF. (1)如图1,当点D在线段BC上时,求证:BD=CF;

(2)如图2,当点D在线段BC的延长线上,且∠BAC=90°时.

①问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

②延长BA交CF于点G,连接GE,若AB=2

,CD=BC,请求出GE的长.

第5页(共24页)

2016-2017学年山东省济南市历城区八年级(下)期末数

学试卷

参考答案与试题解析

一、选择题(每题4分,共48分)

1.(4分)下列各式从左到右的变形中,是因式分解的为( ) A.x(a+2b)=ax+2bx B.x2﹣1+4y2=(x﹣1)(x+1)+4y2 C.x2﹣4y2=(x+2y)(x﹣2y) D.ax+bx﹣c=x(a+b)﹣c 【分析】利用因式分解的定义判断即可.

【解答】解:根据题意得:下列各式从左到右的变形中,是因式分解的为x2﹣4y2=(x+2y)(x﹣2y). 故选:C.

【点评】此题考查了因式分解的定义,熟练掌握因式分解的定义是解本题的关键.

2.(4分)不等式﹣2x<4的解集是( ) A.x>2

B.x<2 C.x<﹣2 D.x>﹣2

【分析】两边同时除以﹣2,把x的系数化成1即可求解. 【解答】解:两边同时除以﹣2,得:x>﹣2. 故选:D.

【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错. 解不等式要依据不等式的基本性质:

(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.

3.(4分)化简A.m+3 B.m﹣3

﹣C.

的结果是( ) D.

第6页(共24页)

【分析】原式利用同分母分式的减法法则计算,约分即可得到结果. 【解答】解:原式=故选:A.

【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

4.(4分)一元二次方程x2﹣4x+2=0的根的情况是( ) A.有两个相等的实数根

B.有两个不相等的实数根 =

=m+3.

C.只有一个实数根 D.没有实数根

【分析】把a=1,b=﹣4,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.

【解答】解:∵a=1,b=﹣4,c=2代, ∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8>0, ∴方程有两个不相等的实数根. 故选:B.

【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

5.(4分)某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A.5

B.6

C.7

D.8

【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题. 【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8. 故选:D.

【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.

6.(4分)如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b≤0的解集在数轴上表示正确的是( )

第7页(共24页)

A.

D.

B.

C.

【分析】不等式kx+b≤0的解集是在x轴及其下方的函数图象所对应的自变量的取值范围,观察图象得出不等式kx+b≤0的解集,然后根据不等式在数轴上的表示方法即可求解.

【解答】解:由图象可以看出,x轴及其下方的函数图象所对应自变量的取值为x≤﹣2,

所以不等式kx+b≤0的解集是x≤﹣2. 故选:B.

【点评】本题考查了一次函数与一元一次不等式解集的关系;理解函数值小于0的解集是x轴下方的函数图象所对应的自变量的取值是解决本题的关键.

7.(4分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )

A.(3,1) B.(3,﹣1) C.(1,﹣3) D.(1,3)

【分析】首先连接AB交OC于点D,由四边形OACB是菱形,可得AB⊥OC,AD=BD=1,OD=CD=3,易得点B的坐标是(3,﹣1). 【解答】解:连接AB交OC于点D, ∵四边形OACB是菱形,

∴AB⊥OC,AD=BD=1,OD=CD=3,

第8页(共24页)