最新2019年初中数学知识点中考总复习总结归纳(人教版) 下载本文

精品文档

精品文档

2019年初中数学知识点中考总复习总结归纳

精品文档

第一章 有理数

考点一、实数的概念及分类 (3分)

1、实数的分类

正有理数

有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数

无理数 无限不循环小数 负无理数 2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,32等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等

π+8等; 3第二章 整式的加减

考点一、整式的有关概念 (3分)

1、代数式

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 2、单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如3?5a3b2c是6次单项式。

考点二、多项式 (11分)

1、多项式

几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。 2、同类项

所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 3、去括号法则

(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。 4、整式的运算法则 精品文档

精品文档

整式的加减法:(1)去括号;(2)合并同类项。

第三章 一元一次方程

考点一、一元一次方程的概念 (6分) 1、方程

含有未知数的等式叫做方程。 2、方程的解

能使方程两边相等的未知数的值叫做方程的解。 3、等式的性质

(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。 4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程

ax?b?(0x为未知数,a?0)叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

第四章 图形的初步认识

考点一、直线、射线和线段 (3分) 1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。

(2)点动成线,线动成面,面动成体。 3、直线的概念

一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 4、射线的概念

直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。 5、线段的概念

直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。 6、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。 一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。 一条线段可用它的端点的两个大写字母来表示。 注意:

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。 (2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。 精品文档

精品文档

(4)点和直线的位置关系有线面两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 7、直线的性质

(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。 8、线段的性质

(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。 9、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 考点二、角 (3分)

1、角的相关概念

有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。 当角的两边在一条直线上时,组成的角叫做平角。

平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。

如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。 如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。 2、角的表示

角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法: ①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。 3、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’=60” 4、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 (2)角的大小可以度量,可以比较 (3)角可以参与运算。 5、角的平分线及其性质

一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: 精品文档