小学奥数学习资料(完整讲义) 下载本文

如果我们改变观察的方法,从这个物体的正上方向下俯视这个物体,会看到这个物体上面的面积就像图1-17那样。这三个圆的面积,就是底面半径是1.5米的那个圆柱的底面积。所以,这个物体的表面积,就等于一个大圆柱的表面积加上中、小圆柱的侧面积。

(2π×1.5+2π×1.5×1)+(2π×1×1)+(2π×0.5×1)

2

=(4.5π+3π)+2π+π =7.5π+3π =10.5π =10.5×3.14 =32.97(平方米) 答略。

*例11 如图1-18所示,某铸件的横截面是扇形,半径是15厘米,圆心角是72°,铸件长20厘米。求它的表面积和体积。(适于六年级程度)

解:遇到这样的题目,不但要注意计算的技巧,还要注意观察的全面性,不可漏掉某一侧面。图1-18表面积中的一个长方形和一个扇形就容易被漏掉,因而在解题时要仔细。

求表面积的方法1:

=3.14×45×2+600+120×3.14 =3.14×90+3.14×120+600 =3.14×(90+120)+600 =659.4+600

=1259.4(平方厘米) 求表面积的方法2:

=3.14×210+600 =659.4+600

=1259.4(平方厘米) 铸件的体积:

=3.14×225×4 =3.14×900 =2826(立方厘米) 答略。

第二讲 尝试法

解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。

一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。

例1 把数字3、4、6、7填在图2-1的空格里,使图中横行、坚列三个数相加都等于14。(适于一年级程度)

解:七八岁的儿童,观察、总结、发现规律的能力薄弱,做这种填空练习,一般都感到困难。可先启发他们认识解此题的关键在于试填中间的一格。中间一格的数确定后,下面一格的数便可由竖列三个数之和等于14来确定,剩下的两个数自然应填入左右两格了。

中间一格应填什么数呢?

先看一个日常生活中的例子。如果我们要从一种月刊全年的合订本中找到第六期的第23页,我们一定要从合订本大约一半的地方打开。要是翻到第五期,就要再往后翻;要是翻到第七期、第八期,就要往前翻。找到第六期后,再往接近第23页的地方翻,??

这样反复试探几次,步步逼近,最后就能找到这一页。 这就是在用“尝试法”解决问题。

本题的试数范围是3、4、6、7四个数,可由小至大,或由大至小依次填在中间的格中,按“横行、竖列三个数相加都得14”的要求来逐个尝试。

如果中间的格中填3,则竖列下面的一格应填多少呢?因为14-5-3=6,所以竖列下面的一格中应填6(图2-2)。

下面就要把剩下的4、7,分别填入横行左右的两个格中(图2-3)。把横行格中的4、3、7三个数加起来,得14,合乎题目要求。

如果中间一格填4、或填6、7都不合乎题目的要求。 所以本题的答案是图2-3或图2-4。

例2 把1、2、3??11各数填在图2-5的方格里,使每一横行、每一竖行的数相加都等于18。(教科书第四册第57页的思考题,适于二年级程度)

解:图2-5中有11个格,正好每一格填写一个数。

图2-6中写有A、B、C的三个格中的三个数,既要参加横向的运算,又要参加纵向的运算,就是说这三个数都要被用两次。因此,确定A、B、C这三个数是解此题的关键。

因为1~11之中中间的三个数是5、6、7,所以,我们以A、B、C分别为5、 6、7开始尝试(图2-7)。

以6为中心尝试,看6上、下两个格中应填什么数。 因为18-6=12,所以6上、下两格中数字的和应是12。

考虑6已是1~11之中中间的数,那么6上、下两格中的数应是1~11之中两头的数。再考虑6上面的数还要与5相加,6下面的数还要与7相加,5比7小,题中要求是三个数相加都等于18,所以在6上面的格中填11,在6下面的格中填1(图2-8)。