五、解答题(本题6分)
26.在△ABC中,AD是△ABC的角平分线. (1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连结AF,求证:AF⊥AD;
(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4, AC=7, 求NC的长. 图1
(1) 证明:
(2)解:
图2
13
北京市西城区(北区)2012–2013学年度第一学期期末试卷 八年级数学附加题 2013.1
一、填空题(本题共6分)
1.在平面直角坐标系xOy中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律.
回答下列问题:
(1)经过x轴上点(5,0)的正方形的四条边上的整点个数是 ;
(2)经过x轴上点(n,0)(n为正整数)的正方形的四条边上的整点个数记为m,则m与
n之间的函数关系是 .二、解答题(本题共14分,
第2题8分,第3题6分)
2.在平面直角坐标系xOy中,直线y?x?6与x轴交于点A,与y轴交于点B.
(1)求∠BAO的度数; (2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点Q
在AD上,连结PQ,过作射线PF⊥PQ交x轴于点F,作PG⊥x轴于点G. 求证:PF=PQ ; (3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P
为线段EB的中点,连接PD、PO,猜想线段PD、PO有怎样的关系?并说明理由.
,
图1
14
图2
3.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线, DE⊥AB于点E.
(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作
∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系; (3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,
NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.
(1)证明: 图1
(2)结论: ;
(3)证明 :
图2
图3
15
北京市西城区(北区)2012 — 2013学年度第一学期期末试卷
八年级数学参考答案及评分标准 2013.1
一、选择题(本题共30分,每小题3分)
题号 1 2 3 4 答案 C D A B 11 x?2 5 D 6 C 13 7 C 8 A 9 B 14 6 18 k?2 10 D 二、填空题(本题共24分,第13题4分,第18题2分,其余各题每小题3分)
12 1?2,? (,0),(0,?1) 2每空2分 17 15 -5或1 15x?16 151.2x?12 72 或0 20.解: (1m?3?1m?3)?2mm?6m?9(m?3)2m22 == 2m(m?3)(m?3)?···············································································3分 m?3m?3. ···································································································4分 9?39?3?12当m?9时,原式=. ···································································5分 21.解:方程两边同乘(x?1)(x?1),得 x(x?1)?3(x?1)?(x?1)(x?1). ···································································2分 分 分 化简,得x?3x?3?解得 ?1.··············································································4 x?2. ·······························································································5 ?2时,(x?1)(x?1)?0, 检验:当x∴x?2是原分式方程的解. ·········································································6分 22.解:(1)∵AE∥BF, ∴∠A=∠FBD. ···················································································· 1分 又∵AB= CD, ∴AB+BC = CD+BC. 即AC=BD. ··································· 3分 在△AEC和△BFD中, 16