五年级高斯奥数之包含与排除含答案 下载本文

第4讲 包含与排除

内容概述

有重叠部分酌若干对象的计数问题.能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象酌容斥原理;灵活处理具有一些不确定性酌计数问题,以及其他形式的重复计数问题.

典型问题

兴趣篇

1.暑假里,小悦和冬冬一起讨论“金陵十八景”.他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的.如果小悦去过其中的卜二景,那么冬冬去过其中的几景?

2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过.请问:至少看过其中一部的小朋友有多少人?

3.五年级一班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.请问:语文成绩得满分的有多少人?

4.某餐馆有27道招牌菜.小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的.请问:有多少道招牌菜是两人都没有吃过的?

5.如图4-I,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2.请问: (1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少? (2)只被这3个圆中某一个圆覆盖的部分的面积是多少?

6.在一个由30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或者几种,其中有10个人爱喝红茶,12个人不爱喝红茶却爱喝绿茶,请问:只爱喝花茶的有多少人?

7.光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人.同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组的有10人,三组都参加的有2人.光明小学五年级参加课外活动的一共有多少人?

8.卫生部对120种食物是否含有维生素A、C、E进行调查,结果发现:含维生素A的有62种,含维生素C的有90种,含维生素E的有68种,同时含维生素A和C的有48种,同时含维生素A和E的有36种,同时含维生素C和E的有50种,同时含这三种维生素的有25种.请问:

(1)这三种维生素都不含的食物有多少种?(2)仅含维生素A的食物有多少种?

9.操场上有50名同学在跑步或跳绳,其中女生有18名,跳绳的同学有31名,跑步的男生有14名.跳绳的女生有多少名?

10.学校举行棋类比赛,分为象棋、围棋和军棋三项,每人最多参加其中两项.根据报名的人数,学校决定对象棋的前9名、围棋的前10名和军棋的前11名发放奖品.请问:最少有几人获得奖品?

拓展篇

1.在一个办公室中,有7个人爱喝茶,10个人爱喝咖啡,3个人既爱喝茶又爱喝咖啡,如果每个人都至少爱喝茶或咖啡中的一种,那么这个办公室里共有多少人?

2.五年级二班有40名同学,其中有25:人没参加数学小组,有18人参加航模小组,有10人两个小组都参加.那么只参加了这两个小组之一的学生共有多少人?

3.在1至100这100个自然数中,既不能被2整除也不能被3整除的数有多少个?

4.渔乡小学举行长跑和游泳比赛,共305人参加.参加长跑比赛的有150名男生和90名女生,参加游泳比赛的有120名男生和70名女生,有110名男生两项比赛都参加了,请问:只参加游泳比赛而没有参加长跑比赛的女生有多少人?

5.森林里住着一群小白兔,每只小白兔都爱吃萝卜、白菜和青草中的一种或者几种.爱吃萝卜的小白兔中有12只不爱吃白菜;爱吃白菜的小白兔中有23只不爱吃青草;爱吃青草的小白兔中有34只不爱吃萝卜.如果三种食物都爱吃的小白兔有5只,那么这群小白兔一共有多少只?

6.三位基金经理投资若干只股票.张经理买过其中66只,王经理买过其中40只,李经理买过其中23只.张经理和王经理都买过的有17只,王经理和李经理都买过的有13只,李经理和张经理都买过的有9只,三个人都买过的有6只.请问:这三位经理一共买过多少只股票?

7.唐僧西天取经共经历了81难,其中单独渡过了3难,与孙悟空一起渡过了77难,与猪八戒一起渡过了65难,与沙和尚一起渡过了62难,同时与孙悟空和猪八戒一起渡过了64难,同时与孙悟空和沙和尚一起渡过了61难,同时与猪八戒和沙和尚一起渡过了60难.请问:师徒四人共同渡过的有多少难?

8.培英学校有学生1000人,其中有500人订阅了《中国少年报》,有350人订阅了《少年文艺》,有250人订阅了《数学报》,至少订阅两种报刊的有400人,订阅了三种报刊的有

100人.请问:培英学校有多少人没有订报?

9.五年级一班有46名学生参加数学、语文、文艺三项课外小组.其中有24人参加了数学小组,20人参加了语文小组,既参加数学小组又参加语文小组的有10人.参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,还是三项小组都参加的人数的7倍,既参加文艺小组也参加语文小组的人数等于三项小组都参加的人数的2倍.求参加文艺小组的人数.

10.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙三人签名的分别有33本、44本和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本,问:这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?

11五年级三班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有22人,参加英语竞赛的有20人.如果每人最多参加两科竞赛,那么该班未参加竞赛人数最多可能有多少人?

12.甲、乙、丙三人都在读同一本故事书,书中有100个故事.已知甲读了85个故事,乙读了70个故事,丙读了62个故事.请问:

(1)甲、乙、丙三人共同读过的故事最少有多少个?

(2)如果每个人都是从某一个故事开始,按顺序连续往后读,那么甲、乙、丙三人共同读过的故事最少有多少个?

超越篇

1.森林里住着100只小白兔,凡是不爱吃萝卜的小白兔都爱吃白菜.其中爱吃萝卜的小白兔数量是爱吃白菜的小白兔数量的2倍,而不爱吃白菜的小白兔数量是不爱吃萝卜的小白兔数量的3倍,它们当中有多少只小白兔既爱吃萝卜又爱吃白菜?

2.育才小学匦展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画.其他年级的画共有多少幅?

3.巨人学校有105名男生和75名女生参加数学竞赛,有95名女生和85名男生参加作文竞赛.已知该校一共有280名学生参加了竞赛,其中只参加数学竞赛的男生人数与只参加作文竞赛的女生人数相同.请问:只参加数学竞赛的女生有多少人?

4.冬冬和爸爸妈妈去芬兰旅游,他们照了很多照片.回家后,冬冬先把所有有自己像的照片放到自己的相册里,再把剩下的有妈妈像的照片放到妈妈的相册里,最后把剩下的照片放到爸爸的相册里,爸爸认为应该把所有有自己像的照片都放到自己相册里,于是从冬冬和妈妈的相册里一共拿出了37张照片放到了自己的相册,妈妈不同意,又把放在冬冬和爸爸的相册里所有有自己像的45张照片都拿出来放到了自己的相册.请问:究竟是妈妈和冬

冬的合影多,还是爸爸和冬冬的合影多?多几张?

5.一次测验共有5道试题.测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题.如果做对3道或3道以上试题的同学为考试合格,请问:这次考试的合格率最多达百分之几?最少达百分之几?

6.五年级一班有22人参加语文竞赛,32人参加数学竞赛,27人参加英语竞赛,其中同时参加语文竞赛和数学竞赛的有12人,同时参加语文竞赛和英语竞赛的有14人,同时参加数学竞赛和英语竞赛的有15人.请问:五年级一班参加竞赛的总人数最少是多少?

7.在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问:

(1)恰好被3个人浇过的花最少有多少盆? (2)恰好被1个人浇过的花最多有多少盆?

8.一根1.8米长的木棍,从左端开始每隔2厘米划一个刻度,每隔3厘米划一个刻度,每隔5厘米划一个刻度,每隔7厘米划一个刻度,如果按刻度把木棍截断,一共可以截成多少段小木棍?

第4讲 包含与排除

内容概述

有重叠部分酌若干对象的计数问题.能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象酌容斥原理;灵活处理具有一些不确定性酌计数问题,以及其他形式的重复计数问题.

典型问题

兴趣篇

1.暑假里,小悦和冬冬一起讨论“金陵十八景”.他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的.如果小悦去过其中的十二景,那么冬冬去过其中的几景?

冬冬去的景有18+5-12=11处

2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过.请问:至少看过其中一部的小朋友有多少人?

至少看过一部的小朋友有12+21-8=25人

3.五年级一班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.请问:语文成绩得满分的有多少人?

至少有一科得满分的人数是:45-29=16人,这样语文得满分的人数是:16+3-10=9人

4.某餐馆有27道招牌菜.小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的.请问:有多少道招牌菜是两人都没有吃过的?

至少有一人吃过的菜有13+7-2=18道,这样两人都没吃过的菜有27-18=9道。

5.如图4-I,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2.请问: (1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少? (2)只被这3个圆中某一个圆覆盖的部分的面积是多少?

只被甲覆盖的部分有30-6-5+2=21,只被乙覆盖的部分有30-6-8+2=18,这样只被甲或乙覆盖的部分有21+18=39

甲、乙、丙三个圆覆盖的总面积为30×3-6-8-5+2=73,73-6-8-5+2×2=58

6.在一个由30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或者几种,其中有10个人爱喝红茶,12个人不爱喝红茶却爱喝绿茶,请问:只爱喝花茶的有多少人?

因为A+D+G+F=10,B+E=12,且一共是30人,所以只喝花茶的人是C在的部分,有30-10-12=8人

7.光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人.同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组的有10人,三组都参加的有2人.光明小学五年级参加课外活动的一共有多少人?

光明小学参加课外活动的人有54+46+36-4-7-10+2=117人

8.卫生部对120种食物是否含有维生素A、C、E进行调查,结果发现:含维生素A的有62种,含维生素C的有90种,含维生素E的有68种,同时含维生素A和C的有48种,同时含维生素A和E的有36种,同时含维生素C和E的有50种,同时含这三种维生素的有25种.请问:

(1)这三种维生素都不含的食物有多少种?(2)仅含维生素A的食物有多少种?

(1)至少含有一种维生素的食物有62+90+68-48-36-50+25=111种,所以都不含的食物有120-111=9种。

(2)仅含A的食物有62-48-36+25=3种

9.操场上有50名同学在跑步或跳绳,其中女生有18名,跳绳的同学有31名,跑步的男生有14名.跳绳的女生有多少名?

因为这50人只跑步或跳绳,所以E、F都为0,这样:B+D=18,A+B=31,C=14,所以B=18+31+14-50=13人

10.学校举行棋类比赛,分为象棋、围棋和军棋三项,每人最多参加其中两项.根据报名的人数,学校决定对象棋的前9名、围棋的前10名和军棋的前11名发放奖品.请问:最少有几人获得奖品?

因为每个人最多参加两个项目,所以每个人最多活动两个奖品,而共有9+10+11=30个奖品,所以最少有30÷2=15个人获得奖品。获奖分布如下图(横线代表获奖):

拓展篇

1.在一个办公室中,有7个人爱喝茶,10个人爱喝咖啡,3个人既爱喝茶又爱喝咖啡,如果每个人都至少爱喝茶或咖啡中的一种,那么这个办公室里共有多少人?

办公室有7+10-3=14人

2.五年级二班有40名同学,其中有25人没参加数学小组,有18人参加航模小组,有10人两个小组都参加.那么只参加了这两个小组之一的学生共有多少人?

只参加航模小组的人有18-10=8人,所以什么都没参加的人有25-8=17人,所以只参加了两个小组之一的学生有40-17-10=13人

3.在1至100这100个自然数中,既不能被2整除也不能被3整除的数有多少个?

如图,用长方形表示1~100的全部自然数,A圆表示1~100中3的倍数,B圆表示1~100中2的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍

A数的数.

由100?3?331可知,1~100中3的倍数有33个;由100÷2=50个,可知,1~100中2的倍数有50个;由100÷6=16?4可知,1~100既是3的倍数又是2的倍数的数有16个.

由包含排除法,3或2的倍数有:33+50-16=67 (个).从而不是3的倍数也不是2的倍数的数有100-67=33 (个).

4.渔乡小学举行长跑和游泳比赛,共305人参加.参加长跑比赛的有150名男生和90名女生,参加游泳比赛的有120名男生和70名女生,有110名男生两项比赛都参加了,请问:只参加游泳比赛而没有参加长跑比赛的女生有多少人?

B

由A+E=150,B+F=90,E+C=120,E=110.易知C=10,C+D=305-150-90=65,所以D=65-10=55人

5.森林里住着一群小白兔,每只小白兔都爱吃萝卜、白菜和青草中的一种或者几种.爱吃萝卜的小白兔中有12只不爱吃白菜;爱吃白菜的小白兔中有23只不爱吃青草;爱吃青草的小白兔中有34只不爱吃萝卜.如果三种食物都爱吃的小白兔有5只,那么这群小白兔一共有多少只?

A+F=12,B+D=23,C+E=34,G=5,所以白兔的只数为12+23+34+5=74只。

6.三位基金经理投资若干只股票.张经理买过其中66只,王经理买过其中40只,李经理买过其中23只.张经理和王经理都买过的有17只,王经理和李经理都买过的有13只,李经理和张经理都买过的有9只,三个人都买过的有6只.请问:这三位经理一共买过多少只股票?

由公式得:66+40+23-17-13-9+6=96只

7.唐僧西天取经共经历了81难,其中单独渡过了3难,与孙悟空一起渡过了77难,与猪八戒一起渡过了65难,与沙和尚一起渡过了62难,同时与孙悟空和猪八戒一起渡过了64难,同时与孙悟空和沙和尚一起渡过了61难,同时与猪八戒和沙和尚一起渡过了60难.请问:师徒四人共同渡过的有多少难?

因为唐僧只单独度过了3难,所以余下的78难至少有孙、猪、沙三人中的一人陪他一起度过,这样孙、猪、沙一起度过的难有78-[77+65+62-64-61-60]=59难,而唐僧一直都在,所以师徒四人同渡的难有59难。

8.培英学校有学生1000人,其中有500人订阅了《中国少年报》,有350人订阅了《少年文艺》,有250人订阅了《数学报》,至少订阅两种报刊的有400人,订阅了三种报刊的有100人.请问:培英学校有多少人没有订报?

至少订了一种报纸的人有500+350+250-400-100=600人,所以没有订报纸的人有1000-600=400人。

9.五年级一班有46名学生参加数学、语文、文艺三项课外小组.其中有24人参加了数学小组,20人参加了语文小组,既参加数学小组又参加语文小组的有10人.参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,还是三项小组都参加的人数的7倍,既参加文艺小组也参加语文小组的人数等于三项小组都参加的人数的2倍.求参加文艺小组的人数.

设三项都参加的人数有X人,则参加朗诵小组的人数为7X人,参加绘画小组又参加朗诵小组的人数为2X人,参加朗诵小组又参加合唱小组的人数为2X人,于是有46=(24+20+7X-2X-2X-10+X),解得X=3,所以参加朗诵小组的人数为21人。

10.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙三

人签名的分别有33本、44本和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本,问:这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?

由于 甲、丙共同签名的书只有25本, 所以甲、乙、丙都借过的书最多为25本,所以至少一人借过的书,最多有:33+44+55-29-25-36+25=67本,这时没有被借过的书,至少有:100-67=33本

11五年级三班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有22人,参加英语竞赛的有20人.如果每人最多参加两科竞赛,那么该班未参加竞赛人数最多可能有多少人?

由于参赛的共有28+22+20=70人次,而每人最多只能参加两项,所以最少有70÷2=35人参赛,这时没参赛的人最多有50-35=15人。

12.甲、乙、丙三人都在读同一本故事书,书中有100个故事.已知甲读了85个故事,乙读了70个故事,丙读了62个故事.请问:

(1)甲、乙、丙三人共同读过的故事最少有多少个?

(2)如果每个人都是从某一个故事开始,按顺序连续往后读,那么甲、乙、丙三人共同读过的故事最少有多少个?

(1)甲有100-85=15个故事没读,乙有100-70=30个故事没读,丙有100-62=38个故事没读,所以没读的故事最多有15+30+38=83个,所以三人共同读过的书至少有100-83=17个 (2)三人都读过的故事最少有100-30-38=32个

超越篇

1.森林里住着100只小白兔,凡是不爱吃萝卜的小白兔都爱吃白菜.其中爱吃萝卜的小白兔数量是爱吃白菜的小白兔数量的2倍,而不爱吃白菜的小白兔数量是不爱吃萝卜的小白兔数量的3倍,它们当中有多少只小白兔既爱吃萝卜又爱吃白菜?

有题意知:A+B+C=100,A+C=2×(B+C),A=3B.由第二个式子我们有A=2B+C,在结合第三个式子我们有B=C,这样第一个式子就可以变成3B+B+B=100,所以B=20,这样C也就等于20了。

2.育才小学匦展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画.其他年级的画共有多少幅?

通过16幅画不是六年级的可以知道,五年级和其他年级的画作数量之和是16,通过15幅画不是五年级的可以知道六年级和其他年级的画作数量之和是15,那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画,进而可以求出五年级画作有13幅,六年级画作有12幅,那么久可以求出其他年级的画作共有3幅.

3.巨人学校有105名男生和75名女生参加数学竞赛,有95名女生和85名男生参加作文竞赛.已知该校一共有280名学生参加了竞赛,其中只参加数学竞赛的男生人数与只参加作文竞赛的女生人数相同.请问:只参加数学竞赛的女生有多少人?

由公式知:E+F=105+75+95+85-280=80,由于A=D,所以有E-F=(A+E)-(F+D)=105-95=10.所以F=35,这样B=75-35=40人

4.冬冬和爸爸妈妈去芬兰旅游,他们照了很多照片.回家后,冬冬先把所有有自己像的照片放到自己的相册里,再把剩下的有妈妈像的照片放到妈妈的相册里,最后把剩下的照片放到爸爸的相册里,爸爸认为应该把所有有自己像的照片都放到自己相册里,于是从冬冬和妈妈的相册里一共拿出了37张照片放到了自己的相册,妈妈不同意,又把放在冬冬和爸爸的相册里所有有自己像的45张照片都拿出来放到了自己的相册.请问:究竟是妈妈和冬冬的合影多,还是爸爸和冬冬的合影多?多几张?

最开始分的时候,A、D、F、G这四部分全在东东那,然后E、C在妈妈那,B在爸爸那。然后爸爸把D、G、E三部分拿到自己那了,再然后妈妈把F、G、E三部分拿回去了。这样我们就知道D+G+E=37,F+G+E=45,又妈妈与东东的合影部分为F、G,爸爸与东东合影的部分为D、G,易知,与妈妈的多,多F+G+E-(D+G+E)=45-37=8张

5.一次测验共有5道试题.测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题.如果做对3道或3道以上试题的同学为考试合格,请问:这次考试的合格率最多达百分之几?最少达百分之几?

第一题错的有19%人,第二题错的有15%人,第三题错的有9%人,第四题错的有26%人,第五题错的有21%人。这样错的总量为19%+15%+9%+26%+21%=90,所以要使合格率最高是,我们只要然90%的人每人错一道题,这时候合格率为100%。若要使得合格率最低,我就尽量让人错3道题,这样90%÷3=30%,所以最多有30%的人不合格,也就是至少有70%的人合格。

6.五年级一班有22人参加语文竞赛,32人参加数学竞赛,27人参加英语竞赛,其中同时

参加语文竞赛和数学竞赛的有12人,同时参加语文竞赛和英语竞赛的有14人,同时参加数学竞赛和英语竞赛的有15人.请问:五年级一班参加竞赛的总人数最少是多少?

假设三个比赛都参加的有a人,这样参赛总人数=22+32+27-12-14-15+a=40+a,我要让参赛人数尽量少,也就是要让a尽量小。由于同时参加语文竞赛和数学竞赛的有12人,同时参加语文竞赛和英语竞赛的有14人,而参加语文的总人数才22人,所以至少有12+14-22=4人参加了三个比赛,也就是a至少等于4,所以40+a=44人。

7.在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问:

(1)恰好被3个人浇过的花最少有多少盆? (2)恰好被1个人浇过的花最多有多少盆?

8.一根1.8米长的木棍,从左端开始每隔2厘米划一个刻度,每隔3厘米划一个刻度,每隔5厘米划一个刻度,每隔7厘米划一个刻度,如果按刻度把木棍截断,一共可以截成多少段小木棍?