¡¶¹ÜÀíÊýѧʵÑ顷ʵÑ鱨¸æ
°à¼¶ ÐÕÃû
ʵÑé1£ºMATLABµÄÊýÖµÔËËã
¡¾ÊµÑéÄ¿µÄ¡¿
£¨1£©ÕÆÎÕMATLAB±äÁ¿µÄʹÓà £¨2£©ÕÆÎÕMATLABÊý×éµÄ´´½¨£¬
£¨3£©ÕÆÎÕMATLABÊý×éºÍ¾ØÕóµÄÔËËã¡£ £¨4£©ÊìϤMATLAB¶àÏîʽµÄÔËÓà ¡¾ÊµÑéÔÀí¡¿
¾ØÕóÔËËãºÍÊý×éÔËËãÔÚMATLABÖÐÊôÓÚÁ½ÖÖ²»Í¬ÀàÐ͵ÄÔËË㣬Êý×éµÄÔËËãÊÇ´ÓÊý×éÔªËØ³ö·¢£¬Õë¶Ôÿ¸öÔªËØ½øÐÐÔËË㣬¾ØÕóµÄÔËËãÊÇ´Ó¾ØÕóµÄÕûÌå³ö·¢£¬ÒÀÕÕÏßÐÔ´úÊýµÄÔËËã¹æÔò½øÐС£ ¡¾ÊµÑé²½Öè¡¿
£¨1£©Ê¹ÓÃðºÅÉú³É·¨ºÍ¶¨ÊýÏßÐÔ²ÉÑù·¨Éú³ÉһάÊý×é¡£
£¨2£©Ê¹ÓÃMATLABÌṩµÄ¿âº¯Êýreshape£¬½«Ò»Î¬Êý×éת»»Îª¶þάºÍÈýάÊý×é¡£
£¨3£©Ê¹ÓÃÖð¸öÔªËØÊäÈë·¨Éú³É¸ø¶¨±äÁ¿£¬²¢¶Ô±äÁ¿½øÐÐÖ¸¶¨µÄËãÊõÔËËã¡¢¹ØÏµÔËËã¡¢Âß¼ÔËËã¡£
£¨4£©Ê¹ÓÃMATLAB»æÖÆÖ¸¶¨º¯ÊýµÄÇúÏßͼ£¬½«ËùÓÐÊäÈëµÄÖ¸Áî±£´æÎªMÎļþ¡£ ¡¾ÊµÑéÄÚÈÝ¡¿
£¨1£©ÔÚ[0,2*pi]ÉϲúÉú50¸öµÈ¾à²ÉÑùÊý¾ÝµÄһάÊý×飬ÓÃÁ½ÖÖ²»Í¬µÄÖ¸ÁîʵÏÖ¡£ 0:(2*pi-0)/(50-1):2*pi »ò linspace(0,2*pi,50)
£¨2£©½«Ò»Î¬Êý×éA=1:18£¬×ª»»Îª2¡Á9Êý×éºÍ2¡Á3¡Á3Êý×é¡£ reshape(A,2,9) ans =
Columns 1 through 7
1 3 5 7 9 11 13 2 4 6 8 10 12 14 Columns 8 through 9 15 17 16 18 reshape(A,2,3,3) ans(:,:,1) =
1 3 5 2 4 6
ans(:,:,2) =
7 9 11 8 10 12
ans(:,:,3) =
13 15 17 14 16 18
£¨3£©A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5]£¬¼ÆËãÊý×éA¡¢B³Ë»ý£¬¼ÆËãA&B,A|B,~A,A= =B,A>B¡£ A.*B
ans=
0 0 15 12
1 15 0 0 A&B
ans =
0 0 1 1
1 1 0 0 A|B
ans =
1 1 1 1
1 1 1 1
~A
ans =
1 0 0 0
0 0 0 1
A==B
ans =
0 0 0 0
1 0 0 0
A>=B
ans =
0 1 0 1
1 0 1 0
£¨4£©»æÖÆy= 0.5e-t*t*sin(t),t=[0,pi]²¢±ê×¢·åÖµºÍ·åֵʱ¼ä,Ìí¼Ó±êÌây= 0.5e-t*t*sint£¬½«ËùÓÐÊäÈëµÄÖ¸Áî±£´æÎªMÎļþ¡£ a=0.5 b=1/3
t=0:0.001:pi
y=a*exp(b*t)-t.*t.*sin(t) [y_max,t_max]=max(y)
t_text=['t=',num2str(t(t_max))] y_text=['y=',num2str(y_max)]
max_text=char('maximum',t_text,y_text) tit=['y=a*exp(',num2str(b),'t)-t*t*sin(t)'] hold on plot(t,y,'y.')
plot(t(t_max),y_max,'r')
text(t(t_max)+0.3,y_max+0.1,max_text)
t3t3title(tit),xlabel('t'),ylabel('y'),hold off
¡¾ÊµÑéÐĵÃÓë×ܽ᡿
ͨ¹ýÕâ´ÎÊÔÑéÈÃÎÒÁ˽ⳣÓüòµ¥º¯ÊýµÄ¹¦ÄÜ£¬Ñ§»áÀûÓú¯Êý½â¾öһЩ£»ÊýÖµ¼ÆËãºÍ·ûºÅ¼ÆËãµÄʵ¼ÊÎÊÌâ;ÀûÓÃMatlabµÄhelpÃüÁî²éѯһЩº¯ÊýµÄ¹¦ÄÜ¡£ÀûÓÃMATLAB¿ÉÒÔÈ÷±ËöµÄ¼ÆËãÎÊÌâ±äµÃ¸ü¼Ó¼òµ¥»¯£¬Èç¾ØÕóÔËËãµÈ¡£\\
ʵÑé2£ºMATLAB»æÍ¼
¡¾ÊµÑ鲽ĿµÄ¡¿
ÀûÓÃMTALAB»Ä«Î÷¸çñ×Ó£¬¼°²ÎÊý·½³ÌµÄͼÏñ ¡¾ÊµÑéÔÀí¡¿
(1)¶þά»æÍ¼ÃüÁplot(x,y)º¯Êý
(2)Èýά»æÍ¼ÃüÁîÖÐÈýάÇúÏߣºplot3(x,y,z), (3)ÀûÓÃmeshº¯Êý»ÈýάµÄÍø¸ñ±íÃæµÄ¡£
¡¾ÊµÑéÄÚÈÝ¡¿
£¨º¬²Î¿¼³ÌÐò¡¢ÊµÑé½á¹û¼°½á¹û·ÖÎöµÈ£©
?x?2cos(t)?30?t?10?¡£ »³öº¯ÊýͼÐÎ?y?t?z?t?·½³Ì£º
?x?2cos(t)?30?t?10? ?y?t?z?t?¡¾²Î¿¼³ÌÐò¡¿ >> t=0:0.1:4*pi;
>> plot3(2*cos(t),t.^3,t) ¡¾ÊµÑé½á¹û¡¿
z?f(x,y)?»³öÇúÃæ
·½³Ì£º
z?f(x,y)?sinxyx?y2?222,x?[?7.5,7.5]µÄͼÏñ¡£
sinx2?y2x?y22,x?[?7.5,7.5],y?[?7.5,7.5]
¡¾²Î¿¼³ÌÐò¡¿
x = -7.5:0.5:7.5; y = x;
[xx, yy] = meshgrid(x, y); R = sqrt(xx.^2 + yy.^2) + eps; z = sin(R)./R; surf(xx, yy, z)
¡¾ÊµÑé½á¹û¡¿
10.50-0.51050-5-10-10-55010
¡¾ÊµÑéÐĵÃÓë×ܽ᡿
MatlabµÄ³£¼û´íÎó£ºInner matrix dimensions must agree
1¡¢ÒòΪÔÚMatlabµÄÊäÈë±äÁ¿ÊǾØÕ󣬲ÎÓëÔËËãµÄ¾ØÕóάÊý±ØÐë¶ÔÓ¦£¬¾ØÕóÏàÓ¦ÔªËØµÄÔËËã±ØÐëÈ«²¿¼Ódot£¨µã£©£¬Àý2Öз½³ÌÈç¹ûÕâÑùÊäÈ룺x=2*(cos(t)+t*sin(t))£¬¾Í»á³öÏָôíÎó.
2¡¢meshº¯ÊýÊÇÓÃÀ´»ÈýάµÄÍø¸ñ±íÃæµÄ¡£Èýά¿Õ¼äÖеÄÒ»¸öµãÊÇÓÃ(x,y,z)À´±íʾµÄ£¬mesh¾ÍÊǰÑÕâЩµãÖ®¼äÓÃÍø¸ñÁ¬½ÓÆðÀ´¡£??
ʵÑé3£ºMATLAB΢»ý·ÖÎÊÌâµÄ¼ÆËã
¡¾ÊµÑéÄ¿µÄ¡¿ÀûÓÃMTALABÇó½â¶þÖØ»ý·Ö¡¢ÀÕÕ¹¿ªÊ½¼°¼¶ÊýÇóºÍ¡£ ¡¾ÊµÑéÔÀí¡¿
1£®ÀûÓÃint(int(f,x,a,b),y,c,d)º¯ÊýÇó¶þÖØ»ý·Ö¼ÆËãÀ۴λý·Ö
??cdbaf(x,y)dxdy
2£®ÀûÓÃÌ©ÀÕº¯Êýtaylor£¨f,n,x,a)À´Çóf(x,y)µÄn-1½×Ì©ÀÕÕ¹¿ªÊ½
f(x)??k?0n?1f(k)(a)?(x?a)k£» k!3.ÀûÓú¯Êýsymsum(f,k,n1,n2)À´Çó¼¶ÊýµÄºÍº¯Êý
k?n1?f(k)
n2¡¾ÊµÑéÄÚÈÝ¡¿£¨º¬²Î¿¼³ÌÐò¡¢ÊµÑé½á¹û¼°½á¹û·ÖÎöµÈ£©
Çó
??1x?1202xxydydx¡£
¡¾²Î¿¼³ÌÐò¡¿ >> syms x y >> z=x*y;
>> f=int(int(z,y,2*x,x^2+1),x,0,1) ¡¾ÊµÑé½á¹û¡¿ f =1/12
½«f£¨x£©=lnxÕ¹¿ªÎªÃÝΪ£¨x-2)µÄ5½×Ì©ÀÕÕ¹¿ªÊ½¡£ ¡¾²Î¿¼³ÌÐò¡¿ >> syms x n;
>> f=(-1)^n*x^(n+1)/(n+1); >> symsum(f,n,1,inf) ¡¾ÊµÑé½á¹û¡¿
ans =log(1+x)-x
xn?1¼¶ÊýÇóºÍ?(?1),x?(?1,1)¡£
n?1n?1?n¡¾²Î¿¼³ÌÐò¡¿
>> syms x n;
>> f=(-1)^n*x^(n+1)/(n+1); >> symsum(f,n,1,inf) ¡¾ÊµÑé½á¹û¡¿
ans = log(1+x)-x ¡¾ÊµÑéÐĵÃÓë×ܽ᡿
1¡¢ÔÚʵÑé¹ý³ÌÖУ¬ÒªÊÇÒ»¾ä³ÌÐò½áÊøºó¼ÓÁ˷ֺţ¬Ôò˵Ã÷£¬²»ÒªÇóÖ´ÐгÌÐòʱÊä³öÖ´Ðнá¹û£»
2¡¢ÔÚmatlabÖÐÊÇÇø±ð´óСдµÄ£¬Èç¹ûNд³Én»á³öÏÖUndefined function or variable 'n'.Undefined function or variable 'n'.µÄ´íÎóÌáʾ.
ʵÑé4£º MATLABÓÅ»¯¼ÆËã
¡¾ÊµÑéÄ¿µÄ¡¿
ÕÆÎÕÓ¦ÓÃmatlabÇó½âÎÞÔ¼Êø×îÓÅ»¯ÎÊÌâµÄ·½·¨
¡¾ÊµÑéÔÀíÓë·½·¨¡¿ 1£º±ê×¼ÐÎʽ£º
minx?Rnf(X)nÆäÖÐf:R?RΪnÔªº¯Êý
2£®ÎÞÔ¼ÊøÓÅ»¯ÎÊÌâµÄ»ù±¾Ëã·¨Ò»£®×îËÙϽµ·¨£¨¹²éîÌݶȷ¨£©Ëã·¨²½Ö裺 ¢Å ¸ø¶¨³õʼµãX0?En£¬ÔÊÐíÎó²î??0,Áîk=0£» ¢Æ ¼ÆËã?fXk£»
¢Ç ¼ìÑéÊÇ·ñÂú×ãÊÕÁ²ÐÔµÄÅбð×¼Ôò£º ?fXk??£¬
ÈôÂú×㣬ÔòÍ£Ö¹µü´ú£¬µÃµãX*?Xk£¬·ñÔò½øÐТȣ» ¢È ÁîSk???fXk£¬´ÓXk³ö·¢£¬ÑØSk½øÐÐһάËÑË÷£¬ ¼´Çó?kʹµÃ£º minfXk??Sk?fXk??kSk£»
??0?????????? ¢É ÁîXk?1?Xk??kSk£¬k=k+1·µ»Ø¢Æ.
×îËÙϽµ·¨ÊÇÒ»ÖÖ×î»ù±¾µÄËã·¨£¬ËüÔÚ×îÓÅ»¯·½·¨ÖÐÕ¼ÓÐÖØÒªµØÎ».×îËÙϽµ·¨µÄÓŵãÊǹ¤×÷Á¿Ð¡£¬´æ´¢±äÁ¿½ÏÉÙ,³õʼµãÒªÇ󲻸ߣ»È±µãÊÇÊÕÁ²Âý£¬×îËÙϽµ·¨ÊÊÓÃÓÚѰÓŹý³ÌµÄǰÆÚµü´ú»ò×÷Ϊ¼ä²å²½Ö裬µ±½Ó½ü¼«Öµµãʱ£¬ÒËÑ¡ÓñðÖÖÊÕÁ²¿ìµÄËã·¨.£®Å£¶Ù·¨Ëã·¨²½Ö裺
(1) Ñ¡¶¨³õʼµãX0?En£¬¸ø¶¨ÔÊÐíÎó²î??0£¬Áîk=0£» (2) Çó?fXk,?2fXk???????1,¼ìÑ飺Èô?fXk??,Ôò
?? Í£Ö¹µü´ú,X*?Xk.·ñÔò, תÏò(3)£» (3) Áî Sk??[?2fXk]?1?fXk£¨Å£¶Ù·½Ïò£©£» (4) Xk?1?Xk?Sk,k?k?1,ת»Ø(2).
Èç¹ûfÊǶԳÆÕý¶¨¾ØÕóAµÄ¶þ´Îº¯Êý£¬ÔòÓÃÅ£¶Ù·¨¾¹ýÒ»´Îµü´ú ¾Í¿É´ïµ½×îÓŵã,Èç²»ÊǶþ´Îº¯Êý£¬ÔòÅ£¶Ù·¨²»ÄÜÒ»²½´ïµ½¼«Öµµã£¬ µ«ÓÉÓÚÕâÖÖº¯ÊýÔÚ¼«Öµµã¸½½üºÍ¶þ´Îº¯ÊýºÜ½üËÆ,Òò´ËÅ£¶Ù·¨µÄÊÕ Á²ËÙ¶È»¹ÊǺܿìµÄ.
Å£¶Ù·¨µÄÊÕÁ²ËÙ¶ÈËäÈ»½Ï¿ì£¬µ«ÒªÇóHessian¾ØÕóÒª¿ÉÄæ£¬Òª¼ÆËã¶þ½×µ¼ÊýºÍÄæ¾ØÕ󣬾ͼӴóÁ˼ÆËã»ú¼ÆËãÁ¿ºÍ´æ´¢Á¿. ¡¾ÊµÑéÄÚÈÝ¡¿
1. Çó f = 2esinxÔÚ0 [xmax,ymax]=fminbnd (f1, 0,8) ?x????ÔËÐнá¹û£º xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.6448 2. ¶Ô±ß³¤Îª3Ã×µÄÕý·½ÐÎÌú°å£¬ÔÚËĸö½Ç¼ôÈ¥ÏàµÈµÄÕý·½ÐÎÒÔÖÆ³É·½ÐÎÎÞ¸ÇË®²Û£¬ÎÊÈç ºÎ¼ô·¨Ê¹Ë®²ÛµÄÈÝ»ý×î´ó£¿ ½â£º Éè¼ôÈ¥µÄÕý·½Ðεı߳¤Îªx£¬ÔòË®²ÛµÄÈÝ»ýΪ£º(3?2x2)x 2½¨Á¢ÎÞÔ¼ÊøÓÅ»¯Ä£ÐÍΪ£ºmin y=-(3?2x)x£¬ 0 ÏȱàдMÎļþfun0.mÈçÏÂ: function f=fun0(x) f=-(3-2*x).^2*x; Ö÷³ÌÐòΪwliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fvalÔËËã½á¹ûΪ: xmax = 0.5000,fmax =2.0000.¼´¼ôµôµÄÕý·½Ðεı߳¤Îª0.5Ã×ʱˮ²ÛµÄÈÝ»ý×î´ó,×î´óÈÝ»ýΪ2Á¢·½Ã×. ʵÑé5£º MATLABͼÂÛÎÊÌâ¼ÆËã ¡¾ÊµÑéÄ¿µÄ¡¿ Á˽âÓÃMatlabÈí¼þÇó½âͼÂÛÄ£Ðͼ°²ã´Î·ÖÎöÄ£Ð͵ķ½·¨¡£ ¡¾ÊµÑéÄÚÈÝÓëÔÀí¡¿ ÄÚÈÝ£º1.ij³ÇÊÐÒª½¨Á¢Ò»¸öÏû·ÀÕ¾£¬Îª¸ÃÊÐËùÊôµÄÆß¸öÇø·þÎñ£¬ÈçͼËùʾ£®ÎÊÓ¦ÉèÔÚÄǸöÇø£¬²ÅÄÜʹËüÖÁ×îÔ¶ÇøµÄ·¾¶×î¶Ì¡£ 2.ij¿óÇøÓÐÆß¸ö¿óµã£¬ÈçͼËùʾ£®ÒÑÖª¸÷¿óµãÿÌìµÄ²ú¿óÁ¿ q(vj)£¨±êÔÚͼµÄ¸÷¶¥µãÉÏ£©£®ÏÖ Òª´ÓÕâÆß¸ö¿óµãѡһ¸öÀ´½¨Ôì¿ó³§£®ÎÊӦѡÔÚÄĸö¿óµã£¬²ÅÄÜʹ¸÷¿óµãËù²úµÄ¿óÔ˵½Ñ¡¿ó³§ ËùÔڵصÄ×ÜÔËÁ¦£¨Ç§¶Ö¹«À×îС£® ÔÀí£ºÀûÓòã´Î·ÖÎö·¨ºÍͼÂÛ·½·¨Ä£Ð͵ÄÒ»°ã¸ÅÄÀí½â½¨Á¢²ã´Î·ÖÎö·¨ºÍͼÂÛ·½·¨Ä£Ð͵ÄÒ»°ã·½·¨£¬³õ²½Ñ§»á½¨Á¢²ã´Î·ÖÎö·¨ºÍͼÂÛ·½·¨Ä£ÐÍÒÔ½â¾öʵ¼ÊÎÊÌâ¡£ ¡¾²Ù×÷·½·¨Óë²½Öè¡¿ ²½Ö裺1.(1)ÓÃFloydËã·¨Çó³ö¾àÀë¾ØÕóD= (dij)???£® (2)¼ÆËãÔÚ¸÷µã viÉèÁ¢·þÉè Ê©µÄ×î´ó·þÎñ¾àÀë i?1,2,?? 1?i??S(vi) S(vi)?max{dij}1?j?? (3) Çó³ö¶¥µã vk£¬Ê¹ S(vk)?min{S(vi)} ½¨Á¢MÎļþ a=[0 3 inf inf inf inf inf; 3 0 2 inf 18 2.5 inf; inf 2 0 6 2 inf inf; inf inf 6 0 3 inf inf; inf 18 2 3 0 4 inf; inf 2.5 inf inf 4 0 1.5; inf inf inf inf inf 1.5 0]; [D,R]=floyd(a) µã»÷ÔËÐÐ Ôò vk¾ÍÊÇÒªÇóµÄ½¨Á¢Ïû·ÀÕ¾µÄµØµã£®´Ëµã³ÆÎªÍ¼µÄÖÐÐĵ㣮 2. £¨1£©Çó¾àÀëÕóD= (dij)???£® £¨2£© ¼ÆËã¸÷¶¥µã×÷Ϊѡ¿ó³§µÄ×ÜÔËÁ¦ m(vi) £¨3£©Çó m(vi)??q(vj)?dijj?1? i?1,2,?? £¬ vkʹ m(vk)?min{m(vi)}1?i?? £¨4£©½¨Á¢MÎļþ a=[0 3 inf inf inf inf inf; 3 0 2 inf inf 4 inf; inf 2 0 6 2 inf inf; inf inf 6 0 1 inf inf; inf inf 2 1 0 4 inf; inf 4 inf inf 4 0 1.5; inf inf inf inf inf 1.5 0]; [D,R]=floyd(a) q=[3,2,7,1,6,1,4]; m=0; for i=1:7 for j=1:7 m=m+q(i)*D(i,j); end m m=0; end µã»÷ÔËÐÐ £¨5£©Ôò vk¾ÍÊÇÑ¡¿ó³§Ó¦ÉèÖ®¿óµã£®´Ëµã³ÆÎªÍ¼GµÄÖØÐÄ»òÖÐλµã£® ¡¾ÊµÑé½á¹ûÓë·ÖÎö¡¿ ʵÑé½á¹ûÓë·ÖÎö£º1. S(v1)=10, S(v2)=7, S(v3)=6, S(v4)=8.5, S(v5)=7, S(v6)=7, S(v7)=8.5 S(v3)=6,¹ÊÓ¦½«Ïû·ÀÕ¾ÉèÔÚv3´¦¡£ 2. 35877?0?02544?3?520326?D??853015?742104??746540??8.55.57.56.55.51.58.5??5.5?7.5??6.5?5.5??1.5??0? ÓÉÉÏÊö¹«Ê½¿ÉµÃ£º m(v1)=38.5*3=115.5, m(v2)=23.5*2=47, m(v3)=23.5*7=164.5, m(v4)=28.5, m(v5)=23.5*6=141, m(v6)=27.5, m(v7)=35*4=140 ÔÙÇóÆäÖеÄ×îСֵ£¬m(v6)=27.5£¬Ôòv6¾ÍÊÇÑ¡¿ó³§Ó¦ÉèÖ®¿óµã£® ʵÑé6£ºMATLAB¼ÆËã»úÄ£Äâ¼ÆËã ¡¾ÊµÑéÄ¿µÄ¡¿ ѧ»áÓÃÊýѧÈí¼þmatlabºÍÃÉÌØ¿¨Âå·½·¨¹À¼Æ»ý·ÖÖµ£¬²¢ÓÚÆäÖÐÓ¦ÓøÅÂÊÂÛÖеĸÅÂÊÃܶȵÈ֪ʶµã¡£ ¡¾ÊµÑéÎÊÌâ¡¿ ¹À¼Æ»ý·ÖÖµ£¬²¢¶ÔÎó²î½øÐйÀ¼Æ¡£ ¡¾ÊµÑéÒªÇó¡¿ Õë¶ÔÒª¹À¼ÆµÄ»ý·ÖÑ¡ÔñÊʵ±µÄ¸ÅÂÊ·Ö²¼Éè¼ÆÃÉÌØ¿¨Âå¹À¼ÆËã·¨£» ÀûÓüÆËã»ú²úÉúËùÑ¡·Ö²¼µÄËæ»úÑù±¾µÄ¹À¼Æ»ý·ÖÖµ£» ͨ¹ý¼ÆËãÆ½¾ùÎó²î¶Ô¹À¼Æ½á¹û½øÐÐÆÀ¼Û¡£ ¡¾ÊµÑé¹ý³Ì·ÖÎö¡¿ £¨xΪÔËÐнá¹ûƽ¾ùÖµ£¬yΪÑù±¾·½²î£© ¹À¼Æ³ÌÐòÈçÏ£º clc; clear; m=10; n=10000; d=0; e=0; for i=1:m d=0; a=rand(1,n); for j=1:n b=a(j)+2; c=b^2; e(i)=d+c/n; d=e(i); end fprintf('e=%.8f\\n',e(i)) end p=sum(e)/m; for j=1:m; s(j)=(e(j)-p)^2; end q=sum(s); fprintf('x=%.8f\\ny=%.8f\\n',p,q); ½á¹ûΪ£º e=6.34879520 e=6.34068140 e=6.35081124 e=6.31353632 e=6.35586630 e=6.33058791 e=6.32419121 e=6.33707454 e=6.30357011 e=6.35063255 x=6.33557468 y=0.00304243 2.¹À¼Æ³ÌÐò±ä¶¯ÈçÏ£º b=a(j)*3; c=b*sin(b)*3; ½á¹ûΪ£º e=3.12211717 e=3.11373037 e=3.07484948 e=3.08660758 e=3.10052243 e=3.10475698 e=3.13762746 e=3.16481618 e=3.11552000 e=3.09615989 x=3.11167076 y=0.00669223 3.¹À¼Æ³ÌÐò±ä¶¯ÈçÏ£º b=exp(-a(j)^2/2); c=b/n*(2*pi)^0.5; e(i)=d+c/2; ½á¹ûΪ£º e=0.88617655 e=0.88538972 e=0.88635209 e=0.88575809 e=0.88653705 e=0.88606366 e=0.88634011 e=0.88613926 e=0.88573325 e=0.88644154 x=0.88609313 y=0.00000132 4.¹À¼Æ³ÌÐò±ä¶¯ÈçÏ£º b=exp(a(j)^2); c=b/n; e(i)=d+c; ½á¹ûΪ£º e=1.46211146 e=1.46154792 e=1.46327379 e=1.46256348 e=1.46318297 e=1.46235828 e=1.46241378 e=1.46316145 e=1.46203052 e=1.46280489 x=1.46254485 y=0.00000320 5.¹À¼Æ³ÌÐò±ä¶¯ÈçÏ£º b=a(i)*4; c=1/((1+b^2)^0.5); e(i)=d+c*4/n; ½á¹ûΪ£º e=1.98511173 e=1.02167881 e=1.26713031 e=0.98770837 e=1.14216662 e=1.75642022 e=1.97055988 e=1.96227794 e=1.83229787 e=1.06190231 x=1.49872541 y=1.90228258 ¡¾ÊµÑé½á¹ûÓë·ÖÎö¡¿ ͨ¹ý¶ÔʵÑéËùµÃƽ¾ùÖµÓëÕæÊµÖµµÄ±È½Ï£¬¿ÉÒÔ¿´³öʵÑé½á¹ûÓëÕæÊµÖµÏà±È·Ç³£½Ó½ü£¬¶øÇÒÑù±¾·½²îºÜС£¬´Ó¶øËµÃ÷¸ÅÂÊ·Ö²¼µÄѡȡ±È½ÏÊʵ±£¬¼ÆËã»úʵÑéºÜ׼ȷ¡£ ʵÑé7£ºMATLABÓëÂí¶û¿Æ·òÔ¤²âÄ£ÐÍ ¡¾ÊµÑéÄ¿µÄ¡¿ »ùÓÚmatlab±à³ÌÓ¦ÓÃÂí¶û¿É·òÔ¤²âÄ£ÐÍ ¡¾ÊµÑéÔÀí¡¿ Âí¶û¿É·òͨ¹ýʵ¼ùÈÏΪ£ºÊÀ½çÉÏÎÞÂÛÊÇÉç»áÁìÓò»¹ÊÇ×ÔÈ»ÁìÓò£¬ÓÐÒ»ÀàÊÂÎïµÄ±ä»¯¹ý³ÌÖ»ÓëÊÂÎïµÄ½üÆÚ״̬Óйأ¬ÓëÊÂÎïµÄ¹ýȥ״̬Î޹أ¬ÕâÀàÊÂÎïµÄÐÔÖʳÆÎªÎÞºóЧÐÔ¡£ ÀýÈ磬ÊÂÎï¦Ð£¬´Ó³õʼ״̬¦Ð(0)Æð£¬±ä¶¯Ò»´ÎºóΪ¦Ð(1)£¬±ä¶¯n´ÎºóΪ¦Ð(n)£¬Ôò¦Ð(n)½öÓë¦Ð(n-1)Óйأ¬Óën-1ÒÔºóµÄ¸÷´Î±ä¶¯Î޹ء£ Âí¶û¿É·òÁ´£ºÈç¹ûn¸öÁ¬Ðø±ä¶¯µÄÊÂÎÔڱ䶯µÄ¹ý³ÌÖУ¬ÆäÖÐÈÎÒ»´Î±ä¶¯µÄ½á¹û¶¼¾ßÓÐÎÞºóЧÐÔ£¬ÄÇô£¬Õân¸öÁ¬Ðø±ä¶¯ÊÂÎïµÄ¼¯ºÏ£¬¾Í½Ð×öÂí¶û¿É·òÁ´£¬ÕâÀàÊÂÎïµÄÑݱä¹ý³Ì¾Í½Ð×öÂí¶û¿É·ò¹ý³Ì¡£ ¡¾ÊµÑéÄÚÈÝ¡¿ 1.ũҵÊճɱ仯Ԥ²â ¿¼ÂÇijµØÇøÅ©ÒµÊճɱ仯µÄÈý¸ö״̬£¬¼´¡°·áÊÕ¡±¡¢¡°Æ½ÊÕ¡±ºÍ¡°Ç·ÊÕ¡±¡£¼ÇE1Ϊ¡°·áÊÕ¡±×´Ì¬£¬E2Ϊ¡°Æ½ÊÕ¡±×´Ì¬£¬E3Ϊ¡°Ç·ÊÕ¡±×´Ì¬¡£ÏÂ±í¸ø³öÁ˸õØÇø1965¡«2004ÄêÆÚ¼äũҵÊճɵÄ״̬±ä»¯Çé¿ö¡£ÊÔ¼ÆËã¸ÃµØÇøÅ©ÒµÊճɱ仯µÄ×´Ì¬×ªÒÆ¸ÅÂʾØÕ󣬲¢½øÐÐÔ¤²â¡£ ʹÓÃmatlabʵÏÖÈçÏ£º P=[0.2000 0.4667 0.3333;0.5385 0.1538 0.3077;0.3636 0.4545 0.1818]; % ¶ÁÈë×´Ì¬×ªÒÆ¸ÅÂʾØÕó x=[0,1,0]; % ¶ÁÈë³õʼ״̬¸ÅÂÊÏòÁ¿(2004ÄêµÄũҵÊÕ³É״̬) for i=1:11 % Ô¤²â½ñºó11 Äê(2005£2015)µÄũҵÊÕ³É״̬ y= x*P^i end ÔËÐнá¹ûÈçÏ£º y =0.5385 0.1538 0.3077 y =0.3024 0.4148 0.2827 y =0.3867 0.3334 0.2798 y =0.3586 0.3589 0.2823 y =0.3677 0.3509 0.2813 y =0.3648 0.3534 0.2817 y =0.3657 0.3526 0.2815 y =0.3654 0.3529 0.2816 y =0.3655 0.3528 0.2815 y =0.3654 0.3528 0.2815 y =0.3654 0.3528 0.2815 2.Êг¡Õ¼ÓÐÂÊÔ¤²â ij³§¶Ôij²úÆ·µÄÊг¡Õ¼ÓÐÂʺÍÏúÊÛÇé¿ö½øÐÐÁ˵÷²é£ºÒ»Ô·ݹ²ÏúÊÛÁË50Íò¼þ£¬ÆäÖÐÆÕͨ¡¢Ò»¼¶¡¢Ìؼ¶Æ··Ö±ðΪ35¡¢10¡¢5Íò¼þ¡£¶þÔ·ÝÖУ¬Ò»Ô·ÝÂòÆÕͨƷµÄ¹Ë¿Í25%µÄ¹Ë¿ÍתÂòÒ»¼¶Æ·£¬8%µÄ¹Ë¿ÍתÂòÌØ¼¶Æ·£»Ò»Ô·ÝÂòÒ»¼¶Æ·µÄ¹Ë¿Í10%תÂòÌØ¼¶Æ·£¬3%תÂòÆÕͨƷ£»Ò»Ô·ÝÂòÌØ¼¶Æ·µÄ¹Ë¿Í2%ÂòÆÕͨƷ£¬15%תÂòÒ»¼¶Æ·¡£ÇëÔ¤²âÒÔºóÔ·ݸ÷¸öµÈ¼¶²úÆ·µÄÊÐ ³¡Õ¼ÓÐÂÊ¡£ 35105?0?[,,]?[0.7,0.2,0.1]505050ÓÉËù¸øµÄ×ÊÁÏ¿ÉÖª ʹÓÃmatlabʵÏÖÈçÏ£º P=[0.67 0.25 0.08;0.03 0.87 0.1;0.02 0.15 0.83]; %¶ÁÈë×´Ì¬×ªÒÆ¾ØÕó x=[0.7 0.2 0.1]; % ¶ÁÈë³õʼ״̬¸ÅÂÊÏòÁ¿£¨Ò»Ô·ݸ÷µÈ¼¶²úÆ·µÄÊг¡Õ¼ÓÐÂÊ£© for i=1:11 % Ô¤²â½ñÄêÊ£Óà11¸öÔ¸÷²úÆ·µÈ¼¶µÄÊг¡Õ¼ÓÐÂÊ y= x*P^i end ÔËÐнá¹ûÈçÏ£º y =0.4770 0.3640 0.1590 y =0.3337 0.4598 0.2065 y =0.2415 0.5144 0.2441 y =0.1821 0.5445 0.2734 y =0.1438 0.5603 0.2959 y =0.1191 0.5678 0.3131 y =0.1031 0.5707 0.3262 y =0.0927 0.5712 0.3361 y =0.0860 0.5705 0.3435 y =0.0816 0.5694 0.3490 y =0.0787 0.5681 0.3532 ½áÂÛ£º¹Ë¿Í¶ÔÆÕͨƷµÄÐèÇóÓмõÉÙµÄÇ÷ÊÆ£¬¶ÔÒ»¼¶Æ·ºÍÌØ¼¶Æ·µÄÐèÇóÓÐÔö¼ÓµÄÇ÷ÊÆ£¬Òò´Ë£¬¿ÉÒÔµ÷ÕûÏàÓ¦µÈ¼¶²úÆ·µÄ²úÁ¿¡£ ʵÑé8£º»ùÓÚMATLABµÄ»ÒɫԤ²âÄ£ÐÍ ¡¾ÊµÑéÄ¿µÄ¡¿ ʵÑéÄ¿µÄ£ºÕÆÎÕ»ÒɫԤ²âÄ£Ðͼ°ÆäÓ¦Óà »ù±¾ÄÚÈÝ£º»ÒɫԤ²âÄ£Ð͵ÄÌá³ö£¬½¨Ä£ÒÔ¼°ÊµÏÖ´úÂë¡£ ¡¾ÊµÑéÄÚÈÝ¡¿ »Òɫϵͳ( Grey System)ÀíÂÛÊÇÎÒ¹úÖøÃûѧÕߵ˾ÛÁú½ÌÊÚ20ÊÀ¼Í80Äê´ú³õ´´Á¢µÄÒ»Öּ汸ÈíÓ²¿ÆÑ§ÌØÐÔµÄÐÂÀíÂÛ¡£¸ÃÀíÂÛ½«ÐÅÏ¢ÍêÈ«Ã÷È·µÄϵͳ¶¨ÒåΪ°×ɫϵͳ£¬½«ÐÅÏ¢ÍêÈ«²»Ã÷È·µÄϵͳ¶¨ÒåΪºÚɫϵͳ£¬½«ÐÅÏ¢²¿·ÖÃ÷È·¡¢²¿·Ö²»Ã÷È·µÄϵͳ¶¨ÒåΪ»Òɫϵͳ¡£ÓÉÓڿ͹ÛÊÀ½çÖУ¬ÖîÈ繤³Ì¼¼Êõ¡¢Éç»á¡¢¾¼Ã¡¢Å©Òµ¡¢»·¾³¡¢¾üʵÈÐí¶àÁìÓò£¬´óÁ¿´æÔÚ×ÅÐÅÏ¢²»ÍêÈ«µÄÇé¿ö¡£ÒªÃ´ÏµÍ³ÒòËØ»ò²ÎÊý²»ÍêÈ«Ã÷È·£¬ÒòËØ¹ØÏµ²»ÍêÈ«Çå³þ£»ÒªÃ´ÏµÍ³½á¹¹²»Íêȫ֪µÀ£¬ÏµÍ³µÄ×÷ÓÃÔÀí²»ÍêÈ«Ã÷Á˵ȣ¬´Ó¶øÊ¹µÃ¿Í¹Ûʵ¼ÊÎÊÌâÐèÒªÓûÒɫϵͳÀíÂÛÀ´½â¾ö¡£ »ÒɫԤ²âÊÇÓ¦ÓûÒɫģÐÍGM( 1£¬1) ¶Ô»Òɫϵͳ½øÐзÖÎö¡¢½¨Ä£¡¢Çó½â¡¢Ô¤²âµÄ¹ý³Ì¡£ÓÉÓÚ»ÒÉ«½¨Ä£ÀíÂÛÓ¦ÓÃÊý¾ÝÉú³ÉÊֶΣ¬Èõ»¯ÁËϵͳµÄËæ»úÐÔ£¬Ê¹ÎÉÂÒµÄÔʼÐòÁгÊÏÖijÖÖ¹æÂÉ£¬¹æÂɲ»Ã÷ÏԵıäµÃ½ÏΪÃ÷ÏÔ£¬½¨Ä£ºó»¹ÄܽøÐÐ²Ð²î±æÊ¶£¬¼´Ê¹½ÏÉÙµÄÀúÊ·Êý¾Ý£¬ÈÎÒâËæ»ú·Ö²¼£¬Ò²Äܵõ½½Ï¸ßµÄÔ¤²â¾«¶È¡£Òò´Ë£¬»ÒɫԤ²âÔÚÉç»á¾¼Ã¡¢¹ÜÀí¾ö²ß¡¢Å©Òµ¹æ»®¡¢ÆøÏóÉú̬µÈ¸÷¸ö²¿ÃźÍÐÐÒµ¶¼µÃµ½Á˹㷺µÄÓ¦Óᣠһ¡¢GM£¨1£¬1£©Ä£Ðͽ¨Á¢ ÉèÓÐk¸öÔʼ·Ç¸ºÑù±¾ÐòÁРͳÀíÂÛ²ÉÓÃÁ˶ÀÌØµÄÊý¾ÝÔ¤´¦Àí·½Ê½£¬¶ÔÐòÁÐ{ Ϊ½ÒʾϵͳµÄ¿Í¹Û¹æÂÉ£¬»Òɫϵ}½øÐÐÒ»½×ÀÛ¼ÓÉú³É£¬¼´AGOÉú³É£¬ Óɴ˵ÃÉú´æÊýÁУº GM(1,1)Ä£Ð͵ÄÔʼÐÎʽΪ£º Ϊ µÄ½ôÁÚÖµÉú´æÐòÁÐ ÆäÖÐ GM(1,1)Ä£Ð͵Ļù±¾ÐÎʽ£º Èô= Ϊ²ÎÊýÁУ¬ÇÒ , ÔòGM(1,1)Ä£ÐÍ ¹ØÓÚ µÄ×îС¶þ³Ë¹À¼Æ²ÎÊýÁÐÂú×㠵İ׻¯·½³ÌÒ²½ÐÓ°×Ó·½³ÌΪ£º ¶¨Àí£º°×»¯·½³ÌµÄ½âÒ²³ÆÊ±¼äÏìÓ¦º¯ÊýΪ£º GM(1,1)Ä£Ð͵Äʱ¼äÏìÓ¦ÐòÁÐΪ ʵ¼ÊÔ¤²âֵΪ ¶þ¡¢Ä£ÐͼìÑé Ϊȷ±£Ëù½¨Á¢µÄGM(1,1)Ä£ÐÍÓнϸߵÄÔ¤²â¾«¶È£¬»¹ÐèÒª½øÐÐÒÔϼìÑé £¨1£© Çó³ö ¼° Ö®²Ð²îe(k)¡¢Ïà¶ÔÎó²îºÍƽ¾ùÏà¶ÔÎó²î£º , £¨2£© Çó³öÔʼÊý¾Ýƽ¾ùÖµx: . £¬. Èý¡¢²Ð²îÐÞÕýÄ£ÐÍ ¼Ç ,ͬʱÁî µÄGMÄ£ÐÍ£¬Çó½â£¬µÃ³öÆäÔ¤²âÖµ £¬µ±È»ÎÒÃÇÖªµÀ ,Ôò ²¢²»Ò»¶¨È«Îª¸º»òÕßȫΪÕý£¬ÕâʱÎÒÃÇÁîÊÇÒ»¸ö·Ç¸ºÐòÁУ¬ÎÒÃÇ¿ÉÒÔÓ÷½·¨À´½¨Á¢Ëü ,×îºóÓà ÐÞÕý ,¶øºó»¹Ô²Ð²îÔ¤²âÖµ . ÔÀ´µÄÔ¤²âÖµ£¬µÃµ½ÐÞÕýºóµÄÔ¤²âÖµ ËÄ¡¢ÊµÏÖ´úÂë clear all X0=input('ÇëÊäÈëÐòÁоØÕó ');% ÊäÈëÊý¾ÝÇëÓÃÈçÀýËùʾÐÎʽ£º[48.7 57.17 68.76 92.15]»òÕß [43823050,44649620,45793750 46613050 47715440 48526270 49713050]£¬¸ÃÏòÁ¿ÎªÔʼÏòÁ¿X0n=length(X0); for i=2:n %¿ªÊ¼½øÐн¨Ä£¿ÉÐÐÐÔ·ÖÎö Q(i)=X0(i-1)/X0(i); end Q(1)=[]; ma=max(Q); mi=min(Q); if ma>exp(2/(n+1)) disp(['ÐòÁÐÎÞ·¨½øÐлÒɫԤ²â']); return elseif mi disp(['ÐòÁÐÎÞ·¨½øÐлÒɫԤ²â']); return else disp(['ÐòÁпÉÒÔ½øÐлÒɫԤ²â']); end clear Q ma mi %¼ìÑé½áÊø X1=cumsum(X0);%ÀÛ¼ÓÉú³ÉËã×ÓÏòÁ¿X1 Z1=ones(n-1,2); for i=1:(n-1) Z1(i,1)=-(X1(i)+X1(i+1))/2; Z1(i,2)=1;%¾ùÖµÉú³ÉËã×ÓZ1 end Z1T=Z1';%¾ùÖµÉú³ÉËã×Ó¾ØÕóZ1µÄתÖÃZ1T for j=1:n-1 Y(j)=X0(j+1); end YT=Y'; A=inv(Z1T*Z1)*Z1T*YT;%×îС¶þ³Ë¹À¼Æ¼ÆËã²ÎÊýa¡¢u a=A(1);%Z1²ÎÊýa u=A(2);%ϵͳ¸ø¶¨²ÎÊýu t=u/a; t_test=input('ÇëÊäÈëÐèÒªÔ¤²â¸öÊý£º'); i=1:t_test+n; X1S(i+1)=(X0(1)-t).*exp(-a.*i)+t;%¼ÆËãʱ¼äÏìÓ¦ÐòÁУ¬µÃ³ö¹À¼ÆÀÛ¼ÓÏòÁ¿X1S X1S(1)=X0(1); X0S(1)=X0(1); for j=n+t_test:-1:2 X0S(j)=X1S(j)-X1S(j-1);%¼ÆËãX1SµÄÄæÀÛ¼ÓÏòÁ¿X0S,»¹ÔX0µÃµ½¹À¼ÆÖµ end for i=1:n Q(i)=X0S(i)-X0(i);%Çó²Ð²î E(i)=abs(Q(i))/X0(i);%ÇóÏà¶ÔÎó²î end AVG=sum(E)/(n-1);%Ç󯽾ùÏà¶ÔÎó²î av=input('ÇëÊäÈëÔÊÐíµÄƽ¾ùÏà¶ÔÎó²î');%ÊäÈëÈç0.1£¬»ò0.05µÈÐÎʽ£¬²»ÒªÓÃ5%ÕâÀàÐÎʽ if AVG>=av;%Èç¹ûƽ¾ùÏà¶ÔÎó²î´óÓÚav%£¬Ôò½øÈë²Ð²îGMÄ£ÐÍ clear cn Q1 CZ1 CZ1T CY CYT CA ca cu ct Q1S cn=length(Q); Q1=cumsum(Q);%ÀÛ¼ÓÉú³ÉËã×ÓÏòÁ¿Q1 CZ1=ones(cn-1,2); for i=1:(n-1) CZ1(i,1)=-(Q1(i)+Q1(i+1))/2; CZ1(i,2)=1;%¾ùÖµÉú³ÉËã×ÓCZ1 end CZ1T=CZ1';%¾ùÖµÉú³ÉËã×Ó¾ØÕóCZ1µÄתÖÃCZ1T for j=1:cn-1 CY(j)=Q(j+1); end CYT=Y'; CA=inv(CZ1T*CZ1)*CZ1T*CYT;%×îС¶þ³Ë¹À¼Æ¼ÆËã²ÎÊýca¡¢cu ca=CA(1);%CZ1²ÎÊýa cu=CA(2);%ϵͳ¸ø¶¨²ÎÊýcu ct=cu/ca; i=1:t_test+cn; Q1S(i+1)=(Q(1)-ct).*exp(-ca.*i)+ct;%¼ÆËãʱ¼äÏìÓ¦ÐòÁУ¬µÃ³ö¹À¼ÆÀÛ¼ÓÏòÁ¿Q1S X1S=X1S+Q1S;%½«²Ð²îÄâºÏÖµ¼ÓÈ룬Ìá¸ß¾«¶È for j=n+t_test:-1:2 X0S(j)=X1S(j)-X1S(j-1);%¼ÆËãX1SµÄÄæÀÛ¼ÓÏòÁ¿X0S end clear av for i=1:cn Q(i)=X0S(i)-X0(i);%Çó²Ð²î E(i)=abs(Q(i))/X0(i);%ÇóÏà¶ÔÎó²î end AVG=sum(E)/(n-1);%Ç󯽾ùÏà¶ÔÎó²î end x=1:n; xs=2:n+t_test; yn=X0S(2:n+t_test); plot(x,X0,'^r',xs,yn,'*-b');%×÷ͼ disp(['°Ù·Öƽ¾ùÏà¶ÔÎó²îΪ£º',num2str(AVG*100),'%']); disp(['ÄâºÏֵΪ£º ',num2str(X0S(1:n+t_test))]); disp(A); ¡¾ÊµÑéÄ¿×ܽ᡿ 1¡¢ »ÒɫԤ²âÄ£Ð͵ÄÓ¦Ó÷¶Î§ÓÐÏÞ£¬ÔÚʹÓÃʱ²»Äܳ¬¹ýÆäÄÜÔ¤²âµÄ·¶Î§ 2¡¢ »ÒɫԤ²âÄ£Ð͵ÄÄ£Ðͽ¨Á¢£¬ÒÔ¼°¼ìÑé·Ç³£ÖØÒª£¬¿ÉÒÔ¼õÉÙÔ¤²â´øÀ´µÄÎó²î ʵÑé9£º»ùÓÚMATLABµÄÄ£ºý¾ÛÀà·ÖÎö ¡¾ÊµÑéÄ¿µÄ¡¿ 1. ¼ÓÇ¿¶ÔMATLABÈí¼þʹÓõÄÄÜÁ¦¡£ 2. ¼ÓÇ¿¶ÔÄ£ºýÊýѧѧϰµÄÀí½â¡£ 3. »ùÓÚMATLAB¶ÔÊý¾ÝÍÚ¾òÖÐʹÓÃÄ£ºýÊýѧ½øÐоÛÀà·ÖÎö ѧ»áʹÓÃMATLABÖеÄÄ£ºý¹¤¾ßÏä¡£ ¡¾ÊµÑé·½°¸¡¿ 1. ʵÑéÔÀí Ê×ÏÈ£¬ÎÒÃÇÒªÁ˽âÒ»°ã¾ÛÀà·ÖÎö·ÖΪÈý¸ö²½Ö裺£¨1£©Êý¾Ý±ê×¼»¯£¬£¨2£©±ê¶¨£¬£¨3£©¾ÛÀà¡£ È»ºóÎÒÃÇÔÚÀ´Á˽âÏÂʲôÊÇÄ£ºýÊýѧ£º £¨1£© Ä£ºýÊýѧÊÇ1956Ä꣬ÃÀ¹ú¼ÓÀû¸£ÄáÑÇ´óѧ¿ØÖÆÂÛר¼ÒÔúµÂ£¨L.A.Zadeh£©½ÌÊÚ Ìá³öµÄ¡£ÊÇÒ»ÃÅÑо¿ºÍ´¦ÀíÄ£ºýÐÔÏÖÏóµÄÊýѧ·½·¨¡£ {£¨2£© ¶ÔÓÚÓÐÏÞÂÛÓò U ? x 1 , x 2 ? x n } ¹¹ÔìÓ³ÉäA(x)£ºU¡ú[0,1]£¬È·¶¨UÉÏµÄ Ä£ºý×Ó¼¯A£¬Ó³ÉäA(x)³ÆÎªAµÄÁ¥Êôº¯Êý£¬Ëü±íʾx¶ÔAµÄÁ¥Êô³Ì¶È¡£ £¨3£© Ä£ºý¼¯µÄ»ù±¾ÔËË㣺 ÏàµÈ£ºA = B ? A(x) = B(x)£» °üº¬£ºA?B ? A(x)¡ÜB(x)£» ²¢£ºA¡ÈBµÄÁ¥Êôº¯ÊýΪ (A¡ÈB)(x)=A(x)¡ÅB(x)=max{A(x)£¬B(x£©}£» ½»£ºA¡ÉBµÄÁ¥Êôº¯ÊýΪ (A¡ÉB)(x)=A(x)¡ÄB(x)=min{A(x)£¬B(x£©}£» ÓࣺAcµÄÁ¥Êôº¯ÊýΪ Ac(x) = 1- A(x). 2. »ùÓÚMATLABÀûÓÃÄ£ºýÊýѧʵÏÖ¾ÛÀà·ÖÎö¡£ £¨1£© Êý¾Ý±ê×¼»¯¡£ ÉèÂÛÓòX = {x1, x2, ¡, xn}Ϊ±»·ÖÀà¶ÔÏó,ÿ¸ö¶ÔÏóÓÖÓÉm¸öÖ¸±ê±íʾÆäÐÔ×´:xi = { xi1, xi2, ¡, xim}, i = 1, 2, ¡, n¡£ ¸ù¾ÝÄ£ºý¾ØÕóµÄÒªÇ󣬽«Êý¾ÝѹËõµ½[0,1]Çø¼äÉÏ¡£Í¨³£ÐèÒª×÷Èçϼ¸Öֱ任£º ¢ÙÆ½ÒÆ ? ±ê×¼²î±ä»» x?xk ??ikxik(i?1,2,...,n;k?1,2,...,m) sk1n1n ÆäÖÐxk?xik,sk?(xik?xk)2ni?1ni?1 ¢ÚÆ½ÒÆ ? ¼«²î±ä»» xik?min{xik|1?i?n} ???xik max{xik|1?i?n}?min{xik|1?i?n} ¢Û¶ÔÊý±ä»» ikik È¡¶ÔÊýÒÔËõС±äÁ¿¼äµÄÊýÁ¿¼¶¡£ £¨2£© ±ê¶¨ ÏàËÆÐÔ¶ÈÁ¿£¬ÓֳƱ궨£¬¾ÍÊǸù¾Ýʵ¼ÊÇé¿ö£¬°´Ò»¶¨×¼Ôò»òijһÖÖ·½·¨£¬¸øÂÛÓòXÖеÄÔªËØÁ½Á½Ö®¼ä¶¼¸³ÒÔ[0,1]ÄÚµÄÒ»¸öÊý£¬³ÆÎªÏàËÆÏµÊý¡£ ËüµÄ´óС±íÕ÷Á½¸öÔªËØ±Ë´Ë½Ó½ü»òÏàËÆµÄ³Ì¶È¡£ ??x??lgx(i?1,2,?,n;k?1,2,?,m)ÓÃrij±íÊ¾ÔªËØxiÓëxjµÄÏàËÆÏµÊý£¬ÆäÖУº xi = { xi1, xi2, ¡, xim}, i = 1, 2, ¡, n xj = { xj1, xj2, ¡, xjm}, j = 1, 2, ¡, n rij?[0,1] ¢ÙÊýÁ¿»ý·¨ i?j?1,m ?mr??1ÆäÖÐM?max(xik?xjk)xik?xjk,i?ji?j ijk?1?Mk?1? ¢Ú¼Ð½ÇÓàÏÒ·¨ m xikxjk k?1rij?mm 22xxikjk k?1k?1 ¢ÛÏà¹ØÏµÊý·¨ m |xik?xi||xjk?xj| k?1rij?mm 2(xik?xi)(xjk?xj)2 k?1k?1 ¢Ü×î´ó×îС·¨ m (xik?xjk) ?1rij?km ?????????k?1 ?(xik?xjk)¡£¡£¡£¡£¡£¡£¡£ Ò»°ãº£Ã÷¾àÀë·¨ m |xik d(xi,xj)?Ò»°ãŷʽ¾àÀë k?1??xjk| £¨3£© ¾ÛÀà ¢Ù ´«µÝ±Õ°ü·¨ ±ê¶¨µÃµ½µÄÄ£ºý¾ØÕó£¬Ò»°ã½ö¾ßÓÐ×Ô·´ÐÔ¡¢¶Ô³ÆÐÔ£¬¹Ê¿ÉÓô«µÝ±Õ°üÔËË㽫ģºýÏàËÆ¾ØÕóR£¬¸ÄÔì³ÉÄ£ºýµÈ¼Û¾ØÕót(R)ºó½øÐзÖÀà¡£ R ? R ? R ¢Ú ²¼¶û¾ØÕó·¨ ¢Û ×î´óÊ÷·¨ 3. ͨ¹ýÔÚÍøÉϲé×ÊÁÏѧϰ¶ÔMATLABÖÐÄ£ºý¹¤¾ßÏäµÄʹÓᣠ¡¾ÊµÑé¼Ç¼¡¿ 1. Êý¾ÝµÄ±ê×¼»¯ x = 0.2973 0.1351 0.1712 0.3964 0.2703 0.1532 0.1622 0.4144 0.2703 0.0631 0.2162 0.4505 0.4234 0.2883 0.1081 0.1802 0.2342 0.1081 0.2342 0.4234 0.3514 0.1261 0.1261 0.3964 0.3514 0.1892 0.0991 0.3604 0.2793 0.1892 0.1622 0.3694 0.2072 0.1532 0.2072 0.4324 0.1818 0.1364 0.2727 0.4091 0.3545 0.5000 0.0455 0.1000 0.3273 0.5000 0.0273 0.1455 0.2545 0.5182 0.1000 0.1273 0.3000 0.5000 0.0818 0.1182 0.2909 0.6455 0 0.0636 0.3636 0.4636 0.0818 0.0909 0.3545 0.2636 0.2455 0.1364 0.2909 0.5000 0.1182 0.0909 0.2182 0.5636 0.1455 0.0727 0.2000 0.5636 0.1727 0.0636 0.2743 0.3628 0.1947 0.1681 0.2885 0.2212 0.2404 0.2500 0.1765 0.1863 0.2549 0.3824 0.2087 0.4087 0.1913 0.1913 0.2476 0.2190 0.2286 0.3048 0.2193 0.3860 0.2105 0.1842 0.2308 0.2308 0.2019 0.3365 0.2564 0.4444 0.1453 0.1538 0.1485 0.1881 0.2178 0.4455 0.2897 0.2523 0.2430 0.2150 0.2411 0.3571 0.1786 0.2232 0.1743 0.3303 0.2294 0.2661 0.2703 0.3333 0.1892 0.2072 0.2353 0.1667 0.2353 0.3627 0.2427 0.2039 0.2136 0.3398 0.2286 0.2095 0.3048 0.2571 0.2136 0.2039 0.2524 0.3301 0.2222 0.4359 0.1709 0.1709 0.2736 0.2358 0.2830 0.2075 0.1983 0.4310 0.1983 0.1724 2. ±ê¶¨ µÃ³ö40*40µÄÏàËÆ¾ØÕó£¬ÒòλÖùØÏµÔÚÕâÀïֻչʾ7*7 1.0000 0.9779 0.9398 0.8267 0.9440 0.9590 0.9359 0.9779 1.0000 0.9359 0.8179 0.9465 0.9454 0.9298 0.9398 0.9359 1.0000 0.7699 0.9618 0.9152 0.8785 0.8267 0.8179 0.7699 1.0000 0.7814 0.8382 0.8741 0.9440 0.9465 0.9618 0.7814 1.0000 0.9061 0.8809 0.9590 0.9454 0.9152 0.8382 0.9061 1.0000 0.9553 0.9359 0.9298 0.8785 0.8741 0.8809 0.9553 1.0000 3. ¾ÛÀà Ê×ÏÈͨ¹ý R ? R ? R µÃµ½µÈ¼Û¾ØÕó£¬Í¬ÀíÈçÏÂֻչʾ7*7 1.0000 0.9779 0.9582 0.9067 0.9582 0.9590 0.9553 0.9779 1.0000 0.9582 0.9067 0.9582 0.9590 0.9553 0.9582 0.9582 1.0000 0.9067 0.9618 0.9582 0.9553 0.9067 0.9067 0.9067 1.0000 0.9067 0.9067 0.9067 0.9582 0.9582 0.9618 0.9067 1.0000 0.9582 0.9553 0.9590 0.9590 0.9582 0.9067 0.9582 1.0000 0.9553 0.9553 0.9553 0.9553 0.9067 0.9553 0.9553 1.0000 È»ºóͨ¹ýÈ¡²»Í¬µÄ¦ËÀ´»ñµÃµÈ¼Û¾ØÕóµÄ½Ø¾ØÕóÀ´»ñµÃ¾ÛÀà¡£ ÒòΪµ±¦Ë=1ʱ£¬·ÖΪ40À࣬ËùÒÔÒòΪƪ·ùÏÞÖÆ£¬Ö»¾Ù¼¸¸öÀý×Ó£º ¦Ë=0.9730 C = 1 2 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 10 0 0 0 0 11 0 0 0 0 12 0 0 0 0 13 0 0 0 0 14 18 0 0 0 15 0 0 0 0 16 0 0 0 0 17 0 0 0 0 19 20 0 0 0 21 0 0 0 0 22 0 0 0 0 23 0 0 0 0 24 26 28 38 40 25 27 35 0 0 29 0 0 0 0 30 39 0 0 0 31 33 0 0 0 32 0 0 0 0 34 0 0 0 0 36 0 0 0 0 37 0 0 0 0 ¦Ë=0.9600 C = 1 2 8 0 0 3 5 9 29 0 4 0 0 0 0 6 0 0 0 0 7 0 0 0 0 10 22 23 25 27 11 12 13 14 16 15 0 0 0 0 17 0 0 0 0 19 20 0 0 0 21 24 26 28 31 32 0 0 0 0 36 0 0 0 0 ¦Ë=0.9582 C = 1 2 3 5 6 30 34 35 37 39 4 7 11 12 13 14 16 15 17 19 20 21 24 26 28 31 32 36 ¦Ë=0.9024 C = Columns 1 through 29 1 2 3 4 5 14 15 16 17 18 27 28 29 0 0 0 0 0 0 0 0 0 0 30 34 18 0 0 0 0 0 0 0 33 38 0 0 0 0 8 9 18 33 38 6 7 19 20 0 0 0 0 0 0 0 0 0 0 35 37 0 0 0 0 0 0 0 0 40 0 0 0 0 0 10 22 40 8 9 21 22 0 0 0 0 0 39 0 0 0 0 0 0 0 23 25 10 11 23 24 27 29 12 13 25 26 Columns 30 through 40 30 31 32 33 34 35 36 37 38 39 40 ͨ¹ýÒÔÉϹý³Ì¿ÉÒÔ¿´µ½Õû¸ö¾ÛÀàµÄ¹ý³Ì¡£ 3. ¹ØÓÚÄ£ºý¹¤¾ßÏäµÄÓ¦ÓᣠÔÚÕâÀï¸ù¾ÝÑо¿ÐèÒª£¬½öÑÝʾģºýc¾ùÖµ¾ÛÀà¡£ ÉÏÍ¼ÎªËæ»úÒ»¸ö100*2µÄÊý×é¶ÔÆä×ö¾ùÖµ¾ÛÀà¡£ ÒÔÉÏΪһ¸ö100*4Êý×é¶ÔÆä×ö¾ùÖµ¾ÛÀà¡£ ´ËΪÓëÉÏÃæ¾ÛÀàÏàͬµÄËÄάÊý¾Ý½øÐеľÛÀà¡£ ¡¾ÊµÑé×ܽ᡿ Ä£ºý¾ÛÀà·ÖÎöÖдæÔÚ´óÁ¿µÄ¾ØÕóÔËË㣬ͨ¹ýMATLAB½¨Á¢MÎļþ£¬¿ÉÒÔ·½±ã¼ÆËã²¢¿ìËٵõ½¾ÛÀà·ÖÎöµÄ½á¹û¡£Ä£ºý¹¤¾ßÏäµÄÓ¦ÓÃʹÏÖʵÉú»îÖеÄÄ£ºýÎÊÌâ¸ü¼Ó¿ÉÊÓ»¯¡£