提分专练(二) 方程(组)与不等式的实际应用
|类型1| 分配购买问题
1.数学文化[2018·江西]中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为 .
2.[2019·张家界]某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵.
(1)购买两种树苗的总金额为9000元,求购买甲、乙两种树苗各多少棵?
(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.
|类型2| 打折销售问题
3.[2018·南京]刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40 kg.这种大米的原价是多少?
4.[2019·襄阳]襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:
有机蔬菜种类 进价(元/kg) 售价(元/kg) 甲 乙 m n 16 18 (1)该超市购进甲种蔬菜10 kg和乙种蔬菜5 kg需要170元;购进甲种蔬菜6 kg和乙种蔬菜10 kg需要200元.求m,n的值.
(2)该超市决定每天购进甲、乙两种蔬菜共100 kg进行销售,其中甲种蔬菜的数量不少于20 kg,且不大于70 kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60 kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x( kg)之间的函数关系式,并写出x的取值范围.
(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求
a的最大值.
|类型3| 行程、工程问题
5.[2019·眉山]在我市“青山绿水”行动中,某社区计划对面积为3600 m的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600 m区域的绿化时,甲队比乙队少用6天. (1)求甲、乙两工程队每天各能完成多少面积的绿化.
(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
2
2
|类型4| 图形面积问题
6.一幅长20 cm、宽12 cm的图案,如图T2-1,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2.设竖彩条的宽度为x cm,图案中三条彩条所占面积为y cm. (1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的 ,求横、竖彩条的宽度.
2
2
图T2-1
7.如图T2-2,有一块长20 cm,宽10 cm的长方形铁皮,如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面面积为96 cm的无盖的盒子,求这个盒子的容积.
2
图T2-2
|类型5| 增长率问题
8.[2019·宜昌]HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.
(1)求2018年甲类芯片的产量.
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.