bb2=fsolve(hand22,280,opt); SJ2(n,1)=bb2-YPSG(n+1); SJ2(n,2)=sum(cSG(1:n-1)); end if n<=3
hand31=@(x)(wuyingli2(p1,x,H0SG(n+1),xuanlianxian(x,p1,H0SG(n+1),l(1),cSG(1)))-sum(SM0(1:3)));
aa3=fsolve(hand31,200,opt); SJ3(n,1)=aa3-YPSG(n+1);
SJ3(n,2)=xuanlianxian(aa3,p1,H0SG(n+1),l(1),cSG(1)); else
hand32=@(x)(wuyingli2(p1,l(1),H0SG(n+1),cSG(1))+wuyingli2(p1,x-l(1),H0SG(n+1),cSG(2))-sum(SM0(1:3)));
bb3=fsolve(hand32,200,opt); SJ3(n,1)=bb3-YPSG(n+1); SJ3(n,2)=sum(cSG(1:n-2)); end if n<=4
hand41=@(x)(wuyingli2(p1,x,H0SG(n+1),xuanlianxian(x,p1,H0SG(n+1),l(1),cSG(1)))-sum(SM0(1:2)));
aa4=fsolve(hand41,120,opt); SJ4(n,1)=aa4-YPSG(n+1);
SJ4(n,2)=xuanlianxian(aa4,p1,H0SG(n+1),l(1),cSG(1)); else
hand42=@(x)(wuyingli2(p1,l(1),H0SG(n+1),cSG(1))+wuyingli2(p1,x-l(1),H0SG(n+1),cSG(2))-sum(SM0(1:2)));
bb4=fsolve(hand42,120,opt); SJ4(n,1)=bb4-YPSG(n+1); SJ4(n,2)=sum(cSG(1:n-3)); end
if n<=5
hand51=@(x)(wuyingli2(p1,x,H0SG(n+1),xuanlianxian(x,p1,H0SG(n+1),l(1),cSG(1)))-sum(SM0(1:1)));
aa5=fsolve(hand51,40,opt); SJ5(n,1)=aa5-YPSG(n+1);
SJ5(n,2)=xuanlianxian(aa5,p1,H0SG(n+1),l(1),cSG(1)); else
hand52=@(x)(wuyingli2(p1,l(1),H0SG(n+1),cSG(1))+wuyingli2(p1,x-l(1),H0SG(n+1),cSG(2))-sum(SM0(1:1)));
bb5=fsolve(hand52,40,opt); SJ5(n,1)=bb5-YPSG(n+1); SJ5(n,2)=sum(cSG(1:n-4)); end
fMSG(n+1)=sum(cSG(1:n))+xuanlianxian(l(n+1)/2,p1,H0SG(n+1),l(n+1),0); %nÊ©¹¤½×¶ÎÖпç×î´óÄÓ¶È
TmaxSG(n+1)=H0SG(n+1)*sqrt(1+(sinh(aSG(1)))^2); %nÊ©¹¤½×¶ÎÖ÷ÀÂ×î´óÀÁ¦ ls=L2-YPSG(n+1); %nÊ©¹¤½×¶Î±ß¿çÖ÷ÀÂˮƽ³¤¶È fSSG(n+1)=xuanlianxian(ls/2,p1,H0SG(n+1),ls,C2)-C2/2; %nÊ©¹¤½×¶Î±ß¿çÖ÷ÀÂ×î´ó´¹¶È
ZBMSG(n+1,1)=sum(ll)+l(n+1)/2-YPSG(n+1); %Ö÷¿çÖÐÖ÷ÀÂË®Æ½×ø±ê£¬±¸Óà ZBMSG(n+1,2)=fMSG(n+1); %¿çÖÐÖ÷ÀÂÊú×ø±ê lm4=(L1+2*YPSG(n+1))/4; %1/4¿çµÄˮƽ³¤¶È ZB4SG(n+1,1)=lm4-YPSG(n+1); %Ö÷ÀÂ1/4¿çµãµÄºá×ø±ê if n<=3
ZB4SG(n+1,2)=xuanlianxian(lm4,p1,H0SG(n+1),l(1),cSG(1)); %Ö÷ÀÂ1/4¿çµãµÄ×Ý×ø±ê else
lx4=lm4-sum(l(1:n-3)); %Ö÷ÀÂ1/4¿çµã¾Ö²¿×ø±êϵºá×ø±ê
ZB4SG(n+1,2)=sum(cSG(1:n-3))+xuanlianxian(lx4,p1,H0SG(n+1),l(n-2),cSG(n-2)); %×Ý×ø±ê end
if n>=5,break,end
%Ö»¼ÆËãǰ4¸ùµõ¸Ë°²×°ºóÏÂÒ»µõ¸ËµÄ°²×°×ø±ê£¬nÈ¡5ʱÓÃÀ´ºÍ³ÉÇÅ״̬¶Ô±È SM03=sum(SM0(1:5-n)); %δ°²×°µõ¸Ë²¿·ÖÐüË÷µÄÎÞÓ¦Á¦³¤¶È hand4=@(x)(wuyingli2(p1,x,H0SG(n+1),xuanlianxian(x,p1,H0SG(n+1),l(1),cSG(1)))-SM03); %¸ù¾ÝÎÞÓ¦Á¦³¤¶ÈºÍ¸ß²îc¼ÆËã¾Ö²¿Ë®Æ½×ø±êµÄ¾ä±úº¯Êý
AZ2(n+1,1)=fsolve(hand4,80*(6-n),opt)-YPSG(n+1); %ÏÂÒ»¸ùµÄ°²×°ºá×ø±ê
AZ2(n+1,2)=cSG(1); %µÚn¸ùµõ¸Ë°²×°ÍêºóÏÂÒ»¸ùµÄ°²×°×Ý×ø±ê end
ZBMSG(1,:)=[L1/2,fm0];
disp('¸÷Ê©¹¤½×¶ÎÖ÷À¿çÖеã×ø±ê(ÄÓ¶È,µ¥Î»:m)Ϊ£º'),disp(ZBMSG') ZB4SG(1,1)=(L1+2*YPSG(n+1))/4-YPSG(1); ZB4SG(1,2)=xuanlianxian((L1+2*YP)/4,p1,H1,L1+2*YP,C1); disp('¸÷Ê©¹¤½×¶ÎÖ÷ÀÂ1/4¿çµã×ø±ê(µ¥Î»:m)Ϊ:'),disp(ZB4SG') disp('¸÷Ê©¹¤½×¶Î±ß¿çÄÓ¶È(µ¥Î»:m)Ϊ£º'),disp(fSSG')
disp('¸÷Ê©¹¤½×¶ÎÖ÷ÀÂ×î´óÀÁ¦(µ¥Î»:kN)£º'),disp(num2str(TmaxSG')) disp('¸÷Ê©¹¤½×¶ÎËþˮƽÁ¦(µ¥Î»:KN)'),disp(num2str(H0SG')) disp('¸÷Ê©¹¤½×¶ÎËþ¶¥Ô¤Æ«Öµ(µ¥Î»:m)'),disp(YPSG') disp('¸÷Ê©¹¤½×¶Î»Ø¶¥Öµ(µ¥Î»:m)'),disp(YPHD') disp('1ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)'),disp(SJ1') disp('2ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)'),disp(SJ2') disp('3ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)'),disp(SJ3') disp('4ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)'),disp(SJ4') disp('5ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)'),disp(SJ5')
2.4.4¼ÆËã½á¹û
¸÷Ê©¹¤½×¶ÎÖ÷À¿çÖеã×ø±ê(ÄÓ¶È,µ¥Î»:m)Ϊ£º
400.0000 400.0000 400.0000 400.0000 400.0000 400.0000 71.6028 80.8097 81.0710 80.1471 79.0271 78.3779 ¸÷Ê©¹¤½×¶ÎÖ÷ÀÂ1/4¿çµã×ø±ê(µ¥Î»:m)Ϊ:
198.7744 199.6698 199.7825 199.8485 199.8877 199.9017 53.8409 52.1598 53.9675 58.0132 59.3014 59.4160
¸÷Ê©¹¤½×¶Î±ß¿çÄÓ¶È(µ¥Î»:m)Ϊ£º
8.9400 4.6369 3.2793 2.6792 2.3941 2.3034 ¸÷Ê©¹¤½×¶ÎÖ÷ÀÂ×î´óÀÁ¦(µ¥Î»:kN)£º
54361.02317 103549.4604 146432.2166 180106.4656 203386.6152 214679.1003 ¸÷Ê©¹¤½×¶ÎËþˮƽÁ¦(µ¥Î»:KN)
51138.89704 98972.27058 140142.9205 192220.2963 199825.6178 ¸÷Ê©¹¤½×¶ÎËþ¶¥Ô¤Æ«Öµ(µ¥Î»:m)
1.3239 0.6604 0.4350 0.3029 0.2246 ¸÷Ê©¹¤½×¶ÎËþ¶¥Ô¤Æ«»Ø¶¥Öµ(µ¥Î»:m)
0 0.6635 0.2254 0.1320 0.0784 1ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)
360.0646 360.0470 361.0068 362.8632 366.2092 80.4471 80.8147 79.9378 78.8400 78.1979 2ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)
280.9161 280.3788 280.1769 282.2968 285.7276 67.9730 71.9460 72.6802 72.3511 71.9538 3ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)
201.5167 201.3960 200.5385 200.1715 204.1543 52.5533 54.3484 58.1943 59.3680 59.4516 4ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)
121.4961 121.6603 121.2454 120.2995 120.0138 34.0476 34.4953 36.5334 39.8800 40.6641 5ºÅË÷¼ÐÎå¸öÊ©¹¤½×¶Î×ø±ê(µ¥Î»:m)
40.5164 40.7802 40.7482 40.4850 39.9059 12.2644 12.2009 12.7911 13.8711 15.5527
171675.3627 0.1965 0.0281