2019年云南省特岗教师招聘考试《初中数学教师专业课考试大纲》共18页文档 下载本文

(1)了解因式分解的意义及其与整式乘法的区别和联系,了解因式分解的一般步骤。

(2)掌握提公因式法、运用公式法、分组分解法这三种分解因式的基本方法,会用这些方法分解因式。 (八)分式 1.分式

(1)了解分式、有理式、最简分式、最简分母的概念,掌握分式的基本性质,会进行约分与通分。

(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行分式运算。 2.可化为一元一次方程的分式方程

(1)掌握含有字母系数的一元一次方程的解法。

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程;了解增根的概念,会检验一个数是不是分式方程的增根。

(九)一元一次方程

(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元一次方程的解。

(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。

(3)通过解方程的教学,了解“未知”可以转化为“已知\的思想方法。 (十)二元一次方程组

(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代

第 5 页

数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。

(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。

(3)灵活运用代人法、加减法解二元一次方程组,并会解三元一次方程组。 (4)能够列出二元、三元一次方程组解应用题。能够发现、提出日常生活或生产中可以利用二元一次方程组来解决的实际问题,并正确地用语言表述问题及其解决过程。

(5)通过解方程组,了解把“三元”转化为“二元”,把“二元\转化为“一元”的消元的思想方法,从而初步理解把“未知\转化为“已知”和把复杂问题转化为简单问题的思想方法。 (十一)一元一次不等式和一元一次不等式组

(1)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。

(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。

(3)会用不等式的基本性质和移项法则解一元一次不等式。

(4)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。

(5)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

(十二)一元二次方程

第 6 页

1.一元二次方程

(1)了解一元二次方程的概念,会用直接开平方法解形如(b≥O)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。 (2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。

(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。

(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。 (5)能够列出一元二次方程解应用题。 2.可化为一元二次方程的分式方程

(1)掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求分式方程的解,并会验根。

(2)能够列出可化为一元二次方程的分式方程解应用题。 3.简单的二元二次方程组

(1)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。 (2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。 (十三)函数及其图象

第 7 页

1.函数

(1)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间一一对应。

(2)了解常量、变量、函数的意义,会发现、提出函数的实例,以及分辨常量与变量、自变量与函数。

(3)理解自变量的取值范围和函数值的意义,会根据函数解析式确定自变量的取值范围和函数 (4)了解函数的三种表示。 2.正比例函数和反比例函数

(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。

(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。

(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。 3.一次函数的图象和性质

(1)理解一次函数的概念,能够根据实际问题中的条件,确定一次函数的解析式。

(2)理解一次函数的性质,会画出它的图象。 (3)会用待定系数法求一次函数的解析式。 4.二次函数的图象

(1)理解二次函数和抛物线的有关概念,会求抛物线的顶点和对称轴。

第 8 页