20.(本题共2个小题,每题6分,共12分) (1).如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17) cm,正六边形的边长为(x2+2x) cm(其中x>0).求这两段铁丝的总长.
(2).描述证明
海宝在研究数学问题时发现了一个有趣的现象:
将上图横线处补充完整,并加以证明.
21.(本题12分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.票数结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目 测试测试测试成 成绩成绩/绩/分 /分 分 甲 乙 丙 笔试 92 90 95 面试 85 95 80 图二是某同学根据上表绘制的一个不完全的条形图. 请你根据以上信息解答下列问题: (1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
22.(本题12分)如图,已知直线AB与x轴交于点C,与双曲k20
线y=交于A(3,)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴
x3且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式; (2)判断四边形CBED的形状,并说明理由. 23、(本题12分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)试判断BF与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2.∠F=60,求弓形AB的面积
OEDCAFBk24.(本题12分)已知双曲线y=与抛物线y=ax2+bx+c交于
xA(2,3)、B(m,2)、c(-3,n)三点.
(1)求双曲线与抛物线的解析式;
(2)在平面直角坐标系中描出点A、点B、点C,并求出△ABC的面积.