概率论基础(第三版)-李贤平-试题+答案-期末复习 下载本文

2 当y?0时,{X?y}??,FY(y)?P(?)?0

当y?0时,我们有

FY(y)?P{X2?y}?P{?y?X?y}

?FX(y)?FX(?y)?2FX(y)?1

故 Y?X2的概率密度为 当y?0时, fY(y)? 当y?0时,

dFY(y?) 0 dyfY(y)?

ddFY(y)?[2FX(y)?1]dydy11??2fX(y)???e2yy2??21(y)22

12?ye?y2 综上所述,Y?X的概率密度为

y??12e,y?0? fY(y)??2?y?0,y?0?

3.解:因为随机变量X与Y独立,已知它们的概率密度分别是 fX(x)?1e2??x22,fY(y)?1e2?2?y22,

1?xe 所以得 f(x,y)?fX(x)?fY(y)?2? 由此得随机变量Z?X?Y的分布函数

22?y22 .

22 FZ(z)?P(Z?z)?P(X?Y?z)

当z?0时,显然有FZ(z)?0,

当z?0时,我们有

FZ(z)?

1e??2?x2?y2?z?x2?y22dxdy

21?2? 所以,Z的分布函数

?2?0d??e0z??2?d??1?e?z2z??2? FZ(z)??1?e,z?0

?z?0?0, 由此得Z的概率密度

z?1?2?e,z?0 fZ(z)??2

?0,z?0? 所得的分布称为自由度为2的x分布

4.解:记一盒螺丝钉的重量为X,盒中第i个螺丝钉的重量为Xi(i?1,2,2,100),则有

X1,X2,100,X300相互独立同分布,已知EXi?1,DXi?0.1,根据中心极限定理,

(?,?2)X??Xi近似地服从正态分布N,其中

i?1??EX??EXi?100?1?100,i?1100??DX?于是,所求的概率为

?DXi?1100

i?100?0.12?1P(X?102)?1?P(X?102)102?100?1?F(102)?1??()

1?1??(2)?1?0.9772?0.02285.解:由题设X的概率密度为 f(x)?故

1e?2??x22?2,???x???

EY??????xf(x)dx??xe?2??x22?2?x2????x1e?2?2?2?2?2??x22?2dx?x22?2?2????2?20dx?????0?de

2?(?e2???2)??0EY??2??xf(x)dx??????x2f(x)dx

?EX2?DX?(EX)2?DX??2故

DY?EY2?(EY)22?24?22 ???( )???2?2?2?(1?)?22?6.解:由于X,Y,Z相互独立,故 X,Y,Z也相互独立。 又 X,Y,Z均服从标准正态分布,故 EX?222?????x21?12xedx?0

2???x21?12edx?2?x202?x21?12edx 2?EX??2????x2122?1?t2dt,得 令 x?t,则x?2t,dx?222EX?2?2?0??0(2t)e12?t2?t2?1t2dt223?() ?2

??2?2??x??tedt??1?24? EX?4???????x21?12edx?2?x402?x21?12edx 2?122?1?t2dt,得 令 x?t,则x?2t,dx?22EX?2?(2t)04??41?t2?1et2dt22?45?()?2

??44????0tedt?32?t31?????3?22 同理 EY?EZ?EX?0

EY2?EZ2?EX2?1

EY4?EZ4?EX4?3

故 EU?E[X?Y?Z]?EX?EY?EZ?3

222222DU?D[X2?Y2?Z2]?DX2?DY2?DZ2?[EX4?(EX2)2]?[EY4?(EY2)2]?[EZ4?(EZ2)2] ?(3?12)?(3?12)?(3?12)?67,解:由于X~N(0,1),故 X的概率密度为

x21?12e,???x??? f(x)?2? 从而 有

EX??????x21?12xedx?0

2?x21?12edx?1 2?x21?12edx?0 2?x21?12edx?3 2?EX??EX??432????x2????x3EX?? 故

????x4 DX?EX?(EX)?1?0?1 EY?EX?1

DY?EY?(EY)?EX?(EY)?3?1?2 EXY?EX?X?EX?0

Cov(X,Y)?EXY?EX?EY?0?0?1?0

2322422222