房价大数据分析模型构建方法 下载本文

龙源期刊网 http://www.qikan.com.cn

房价大数据分析模型构建方法

作者:陆红

来源:《数字技术与应用》2017年第03期

摘要:大数据分析有很多方法,由于大数据的特点、数据量大、非结构化、属性不确定等特点,建立大数据分析模型比较困难,本文通过房价大数据分析案例,介绍如何通过机器学习构建大数据分析模型的途径和方法,文章重点介绍了如何准备大数据分析模型的训练数据方法,介绍了房价大数据分析模型机器学习算法、机器学习路径,大数据分析模型构建方法等,为从事大数据分析的研究人员提供一些可借鉴的经验和方法。 关键词:大数据;分析模型;房价

中图分类号:TP399 文献标识码:A 文章编号:1007-9416(2017)03-0137-02 1 引言

大数据分析首先要建立一个分析模型,分析模型是大数据分析的基石,只有先建立了模型才能对大数据进行分析。构建大数据分析模型传统的方法很难实现,大数据非结构化、属性很难预知,通过数学、统计学等方法构建大数据分析模型都比较困难,机器学习是构建大数据分析模型最有效的方法之一。机器学习通过不断地学习优化、不断地迭代逼近所要的模型。 2 训练数据准备

机器学习构建大数据分析模型的方法是通过训练数据将模型训练出来。从要研究的大数据对象中找出训练集。机器学习分为监督学习和非监督学习,监督学习需要教师,监督机器学习的结果,事先设定好学习目标,期望的结果。非监督学习的数据一般都无标签,学习结果事先也无法预知,通过数据可视化等方法观察学习结果。

房价大数据分析模型机器学习属于监督学习,期望预测值极大地逼近真实值。首先需要采集房价数据作为训练数据,然后设计房价大数据分析模型机器学习算法,计算机通过机器学习算法和学习路径学习训练数据,学习目标是预测的结果极大地逼近真实数据,通过反复迭代,不断地接近目标,训练出所希望的模型。 3 数据清洗

清洗后的训练数据如下:

间数(x1) x1 2 x1 2 x1 3 x1 3 x1 3 x1 3 x1 2 x1 2 x1 2 x1 3 x1 3 x1 3 x1 2 x1 2 x1 1 x1 3 x1 3 x1 3 x1 3 x1 1 x1 2 x1 2 x1 2 x1 2 x1 2 x1 3 x1 2 x1 3 x1 2 x1 2 x1 3 x1 2 x1 2 x1 3 x1 3 x1 3 x1 2 x1 3 x1 2 x1 1 x1 2 x1 2 x1 2 x1 2