全国大学生数学竞赛试题解答及评分标准(非数学类) 下载本文

与两坐标轴所围成三角形区域.

?01?解: 令x?y?u,x?v,则x?v,y?u?v,dxdy?det??1?1??dudv?dudv,

??y(x?y)ln(1?)ulnu?ulnvxdxdy???D1?x?y??D1?ududv

1ulnuuuu??(dv?lnvdv)du??0001?u1?u 21ulnuu(ulnu?u)???du01?u1?u1u2??du (*) 01?u令t?1?u,则u?1?t2

du??2tdt,u2?1?2t2?t4,u(1?u)?t2(1?t)(1?t),

(*)??2?(1?2t2?t4)dt10

1?2?101?16?2 (1?2t2?t4)dt?2?t?t3?t5??3515??0202.设f(x)是连续函数,且满足f(x)?3x2??f(x)dx?2, 则

f(x)?____________.

解: 令A??f(x)dx,则f(x)?3x2?A?2,

02A??20(3x2?A?2)dx?8?2(A?2)?4?2A,

410。因此f(x)?3x2?。 33解得A?x2?y2?2平行平面2x?2y?z?0的切平面方程是__________. 3.曲面z?2x2?y2?2在解: 因平面2x?2y?z?0的法向量为(2,2,?1),而曲面z?2(x0,y0)处的法向量为(zx(x0,y0),zy(x0,y0),?1),故

(zx(x0,y0),zy(x0,y0),?1)与(2,2,?1)平行,因此,由zx?x,zy?2y知2?zx(x0,y0)?x0,2?zy(x0,y0)?2y0,

即x0?2,y0?1,又z(x0,y0)?z(2,1)?5,于是曲面2x?2y?z?0在(x0,y0,z(x0,y0))处的切平面方程是2(x?2)?2(y?1)?(z?5)?0,即曲

x2?y2?2平行平面 面 z?22x?2y?z?0的切平面方程是2x?2y?z?1?0。

4.设函数y?y(x)由方程xef(y)?eyln29确定,其中f具有二阶导数,且f??1,

精选

d2y

则2?________________. dx

解: 方程xef(y)?eyln29的两边对x求导,得

ef(y)?xf?(y)y?ef(y)?eyy?ln29

11因eyln29?xef(y),故?f?(y)y??y?,即y??,因此

x(1?f?(y))xd2y1f??(y)y????y???

dx2x2(1?f?(y))x[1?f?(y)]2f??(y)1f??(y)?[1?f?(y)]2?2?2? 323???x[1?f(y)]x(1?f(y))x[1?f(y)]ex?e2x???enxx),其中n是给定的正整数. 二、(5分)求极限lim(x?0n解 :因

ex?e2x???enxxex?e2x???enx?nxlim()?lim(1?) x?0x?0nneee故

ex?e2x???enx?neA?limx?0nx x2xnxe?e???e?n?elimx?0nxex?2e2x???nenx1?2???nn?1?elim?e?e x?0nn2因此

en?1eex?e2x???enxxA2lim()?e?e x?0n1f(x)三、(15分)设函数f(x)连续,g(x)??f(xt)dt,且lim?A,A为常数,

0x?0x求g?(x)并讨论g?(x)在x?0处的连续性.

f(x)解 : 由limf(x)连续知,?A和函数

x?0xf(x)f(0)?limf(x)?limxlim?0

x?0x?0x?0x因g(x)??f(xt)dt,故g(0)??f(0)dt?f(0)?0,

00111x因此,当x?0时,g(x)??f(u)du,故

x0?limg(x)?limx?0x?0x0f(u)dux?limx?0f(x)?f(0)?0 1当x?0时,

g?(x)??1x2?x0f(u)du?f(x), x精选

x1xf(t)dtf(t)dt?0?g(x)?g(0)f(x)A0x?lim? g?(0)?lim?lim?limx?02xx?0x?0x?02xxx21xf(x)f(x)1xAAlimg?(x)?lim[?2?f(u)du?]?lim?lim2?f(u)du?A??

0x?0x?0x?0x?0xx0xx22这表明g?(x)在x?0处连续. 四、(15分)已知平面区域D?{(x,y)|0?x??,0?y??},L为D的正向边界,试证:

(1)?xesinydy?ye?sinxdx??xe?sinydy?yesinxdx;

LL5(2)?xesinydy?ye?sinydx??2.

2L证 :因被积函数的偏导数连续在D上连续,故由格林公式知 ????(1)?xesinydy?ye?sinxdx????(xesiny)?(?ye?sinx)?dxdy

?x?y?LD????(esiny?e?sinx)dxdy

D?xeL?sinydy?yesinxdx

????????(xe?siny)?(?yesinx)?dxdy

?x?y?D????(e?siny?esinx)dxdy

D而D关于x和y是对称的,即知

siny?sinx?sinysinx(e?e)dxdy?(e?e)dxdy ????DD因此

siny?sinx?sinysinxxedy?yedx?xedy?yedx ??LL(2)因

t2t4e?e?2(1????)?2(1?t2)

2!4!t?t故

esinx?e?sinx?2?sin2x?2?1?cos2x5?cos2x ?22由

siny?sinysiny?sinx?sinysinx?xedy?yedx???(e?e)dxdy???(e?e)dxdy

LDD知

siny?sinyxedy?yedx??L?1(esiny??2D11siny?sinx?sinysinx(e?e)dxdy?(e?e)dxdy ????2D2D1?e?siny)dxdy???(e?sinx?esinx)dxdy???(e?sinx?esinx)dxdy

2DD精选

5?cos2x5dx??2

00225即 ?xesinydy?ye?sinydx??2

2L???(e??sinx?esinx)dx????五、(10分)已知y1?xex?e2x,y2?xex?e?x,y3?xex?e2x?e?x是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.

解 设y1?xex?e2x,y2?xex?e?x,y3?xex?e2x?e?x是二阶常系数线性非齐次微分方程

y???by??cy?f(x) 的三个解,则y2?y1?e?x?e2x和y3?y1?e?x都是二阶常系数线性齐次微分方程

y???by??cy?0

的解,因此y???by??cy?0的特征多项式是(??2)(??1)?0,而y???by??cy?0的特征多项式是

?2?b??c?0

???y1??2y1?f(x)和 因此二阶常系数线性齐次微分方程为y???y??2y?0,由y1??ex?xex?2e2x,y1???2ex?xex?4e2x y1???y1??2y1?xex?2ex?4e2x?(xex?ex?2e2x)?2(xex?e2x) 知,f(x)?y1?(1?2x)ex

二阶常系数线性非齐次微分方程为

y???y??2y?ex?2xex

六、(10分)设抛物线y?ax2?bx?2lnc过原点.当0?x?1时,y?0,又已知该

1抛物线与x轴及直线x?1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋

3转一周而成的旋转体的体积最小.

解 因抛物线y?ax2?bx?2lnc过原点,故c?1,于是

112b?ab?a??(ax?bx)dt??x3?x2??? 302?032?3即

2(1?a) 3而此图形绕x轴旋转一周而成的旋转体的体积

112V(a)???(ax2?bx)2dt???(ax2?(1?a)x)2dt

003111442432??a?xdt??a(1?a)?xdt??(1?a)?x2dt

00039114??a2??a(1?a)??(1?a)2 5327即

114V(a)??a2??a(1?a)??(1?a)2

5327令 b?精选

1