全国大学生数学竞赛试题解答及评分标准(非数学类) 下载本文

精选

第三届全国大学生数学竞赛预赛试卷

(非数学类)

一.计算下列各题(本题共3小题,每小题各5分,共15分,要求写出重要步骤。) (1).求lim??sinx??x?0x??11?cosx11?cosx;

解:方法一(用两个重要极限):

?sinx?lim??x?0x???limex?0?sinx?x??lim?1??x?0x??sinx?xx?013x2limxsinx?x?sinx?xx?1?cosx?sinx?xx?1?cosx??e?ecosx?1x?032x2lim?e1?x2lim2x?032x2

?e?13方法二(取对数):

?sinx?lim??x?0x???esinx?xx?013x2lim11?cosx?e?sinx?ln??x??limx?01?cosx?esinx?1xlimx?012x2

cosx?1x?032x2lim1?x2lim2x?032x213?e?e?e11??1(2).求lim???...??; n??n?1n?2n?n??111解:方法一(用欧拉公式)令xn? ??...?n?1n?2n?n11由欧拉公式得1??L??lnn=C+o(1),2n

1111则1??L???L??ln2n=C+o(1),2nn?12n其中,o??1?表示n??时的无穷小量,

?两式相减,得:xn-ln2?o(1),?limxn?ln2. n??方法二(用定积分的定义)

精选

limn??xn?lim1n??n?lim(1n??n?1?L?12n)?lim1n??n(1?L?1) 1?1nn1?n1??11?xdx?ln2 0?(3)已知??x?ln?1?e2t?,求d2y。??y?t?arctanetdx2 解:dx2e2tdyetdy1?et2te2ttdt?1?e2t,dt?1?1?e2t?dx?1?e?e?12e2t?2e2t1?e2td2yd?dy?1et?21?e2t?1?e2t??et?2?dx2?dt??dx???dx?2e2tg2e2t?4e4t dt二.(本题10分)求方程?2x?y?4?dx??x?y?1?dy?0的通解。解:设P?2x?y?4,Q?x?y?1,则Pdx?Qdy?0 ?P?y??Q?x?1,?Pdx?Qdy?0是一个全微分方程,dz?Pdx?Qdy

方法一:由?z?x?P?2x?y?4得

z???2x?y?4?dx?x2?xy?4x?C?y?

由?z?y?x?C'?y??Q?x?y?1得C'?y??y?1,?C?y??122y?y?c

z?x2?xy?4x?122y?y?c

二z??dz??Pdx?Qdy???x,y??0,0??2x?y?4?dx??x?y?1?dy ?P?y??Q?x,?该曲线积分与路径无关 精选

设:

? Q?Q12?z???2x?4?dx???x?y?1?dy?x?4x?xy?y?y

002xy2三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且

f?0?,f'?0?,f\?0?均不为0,证明:存在唯一一组实数k1,k2,k3,使得k1f?h??k2f?2h??k3f?3h??f?0?lim?0。 2h?0h证明:由极限的存在性:lim??k1f?h??k2f?2h??k3f?3h??f?0????0

?k1?k2?k3?1?f?0??0,又f?0??0,?k1?k2?k3?1①

k1f?h??k2f?2h??k3f?3h??f?0?h2k1f'?h??2k2f'?2h??3k3f'?3h?h?0h?0由洛比达法则得

limh?0

2h'''由极限的存在性得lim?k1f?h??2k2f?2h??3k3f?3h???0

??h?0?lim?0即

?k1?2k2?3k3?f'?0??0,又f'?0??0,?k1?2k2?3k3?0②

k1f'?h??2k2f'?2h??3k3f'?3h?2hk1f\?h??4k2f\?2h??9k3f\?3h??0

再次使用洛比达法则得

limh?02??k1?4k2?9k3?f\?0??0Qf\?0??0?k1?4k2?9k3?0③

?k1?k2?k3?1?由①②③得k1,k2,k3是齐次线性方程组?k1?2k2?3k3?0的解

?k?4k?9k?023?1?111??k1??1???????设A?123,x?k2,b?0,则Ax?b, ???????149??k??0????3???h?0?lim精选