(word完整版)高中数学必修一必修四知识点总结,推荐文档 下载本文

(5)对数函数

函数 名称 定义 对数函数 函数y?logax(a?0且a?1)叫做对数函数 a?1 0?a?1 y?logaxy图象 x? 1y 1x?O(1,0)xO y?logax (1,0) x 定义域 值域 过定点 奇偶性 单调性 在(0,??)上是增函数 (0,??) R 图象过定点(1,0),即当x?1时,y?0. 非奇非偶 在(0,??)上是减函数 logax?0(x?1)函数值的 变化情况 logax?0(x?1) logax?0(x?1)logax?0(0?x?1)logax?0(x?1)logax?0(0?x?1) 图象的影响 a变化对 (6)反函数的概念

在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高. 设函数y?f(x)的定义域为A,值域为C,从式子y?f(x)中解出x,得式子x??(y).如果对于y在

C中的任何一个值,通过式子x??(y),x在A中都有唯一确定的值和它对应,那么式子x??(y)表示x是y?1?1的函数,函数x??(y)叫做函数y?f(x)的反函数,记作x?f(y),习惯上改写成y?f(x).

(7)反函数的求法

?1①确定反函数的定义域,即原函数的值域;②从原函数式y?f(x)中反解出x?f(y);

?1?1③将x?f(y)改写成y?f(x),并注明反函数的定义域.

(8)反函数的性质

?1 ①原函数y?f(x)与反函数y?f(x)的图象关于直线y?x对称.

?1②函数y?f(x)的定义域、值域分别是其反函数y?f(x)的值域、定义域.

'?1③若P(a,b)在原函数y?f(x)的图象上,则P(b,a)在反函数y?f(x)的图象上.

④一般地,函数y?f(x)要有反函数则它必须为单调函数.

〖2.3〗幂函数

(1)幂函数的定义

? 一般地,函数y?x叫做幂函数,其中x为自变量,?是常数.

(2)幂函数的图象 (3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.

②过定点:所有的幂函数在(0,??)都有定义,并且图象都通过点(1,1).

③单调性:如果??0,则幂函数的图象过原点,并且在[0,??)上为增函数.如果??0,则幂函数的图象在

(0,??)上为减函数,在第一象限内,图象无限接近x轴与y轴.

④奇偶性:当?为奇数时,幂函数为奇函数,当?为偶数时,幂函数为偶函数.当??qpq(其中p,q互质,ppqp和q?Z),若p为奇数q为奇数时,则y?x是奇函数,若p为奇数q为偶数时,则y?x是偶函数,若p为偶数q为奇数时,则y?x是非奇非偶函数.

?⑤图象特征:幂函数y?x,x?(0,??),当??1时,若0?x?1,其图象在直线y?x下方,若x?1,其图

qp象在直线y?x上方,当??1时,若0?x?1,其图象在直线y?x上方,若x?1,其图象在直线y?x下方.

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

①一般式:f(x)?ax?bx?c(a?0)②顶点式:f(x)?a(x?h)?k(a?0)③两根式:

22f(x)?a(x?x1)(x?x2)(a?0)(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.

(3)二次函数图象的性质

①二次函数f(x)?ax?bx?c(a?0)的图象是一条抛物线,对称轴方程为x??2b,顶点坐标是2ab4ac?b2(?,). 2a4a②当a?0时,抛物线开口向上,函数在(??,?bbb时,]上递减,在[?,??)上递增,当x??2a2a2a4ac?b2bbbfmin(x)?;当a?0时,抛物线开口向下,函数在(??,?在[?当x??]上递增,,??)上递减,

4a2a2a2a4ac?b2时,fmax(x)?.

4a2③二次函数f(x)?ax?bx?c(a?0)当??b?4ac?0时,图象与x轴有两个交点

2M1(x1,0),M2(x2,0),|M1M2|?|x1?x2|??. |a|2(4)一元二次方程ax?bx?c?0(a?0)根的分布

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次

函数图象的性质,系统地来分析一元二次方程实根的分布.

22 设一元二次方程ax?bx?c?0(a?0)的两实根为x1,x2,且x1?x2.令f(x)?ax?bx?c,从以下四个

方面来分析此类问题:①开口方向:a ②对称轴位置:x??①k<x1≤x2 ?

b ③判别式:? ④端点函数值符号. 2ayf(k)?0?ya?0x??b2ax2kx1Ox2xk?x1Oxx??b2af(k)?0a?0

②x1≤x2<k ?

ya?0f(k)?0?yx??Ob2ax1Ox2kxx1a?0x2?kxbx??2af(k)?0

③x1<k<x2 ? af(k)<0

ya?0y?f(k)?0x1Okx2xx1Okx2a?0x?f(k)?0

④k1<x1≤x2<k2 ?

y?f(k1)?0?a?0yx??f(k2)?0x2k2b2aOk1x1xOk1x1?x2?k2xx??b2a f(k1)?0a?0f(k2)?0 ⑤有且仅有一个根x(或x2)满足k1<x(或x2)<k2 ? f(k1)f(k2)?0,并同时考虑f(k1)=0或f(k2)=011

这两种情况是否也符合