实用标准文案
1.二元函数极限概念分析
定义1 设函数f在D?R2上有定义,P0是D的聚点,A是一个确定的实数.如果对于任意给定的正数?,总存在某正数?,使得P?U0(PD时,都有 0;?) f(P)?A??,
则称f在D上当P?P0时,以A为极限,记limf(P)?A.
P?P0P?D上述极限又称为二重极限.
2.二元函数极限的求法
2.1 利用二元函数的连续性
命题 若函数f(x,y)在点(x0,y0)处连续,则
(x,y)?(x0,y0)limf(x,y)?f(x0,y0).
2 例1 求f(x,y)?x?2xy 在点(1,2)的极限. 2 解: 因为f(x,y)?x?2xy在点(1,2)处连续,所以
limf(x,y)x?1y?2?lim(x2?2xy)x?1y?2?12?2?1?2?5.
例2 求极限lim1.
?x,y???1,1?2x2?y2 解: 因函数在?1,1?点的邻域内连续,故可直接代入求极限,即
11=.
?x,y???1,1?2x2?y23lim精彩文档
实用标准文案
2.2 利用恒等变形法
将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 lim2?xy?4
x?0xyy?0解: lim2?xy?4
x?0xyy?0?limx?0y?0(2?xy?4)(2?xy?4)xy(2?xy?4)
?lim?xy
x?0xy(2?xy?4)y?0?1x?02?xy?4y?0?lim 1??.4例4 lim(1?2x2)(1?3y2)?12x?3y22?x,y???0,0?.
222解: 原式??x,y???0,0?lim??1?2x??1?3y??1???1?2x??1?3y??1?2?2x?2?3y2???1?2x??1?3y??1?22
??x,y???0,0?lim122?1?2x??1?3y??1?2x ?11?0?. 222?3y2???1?2x??1?3y??1?226x2y2
精彩文档
实用标准文案
2.3 利用等价无穷小代换
一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的
u2(x,y)等价无穷小(u(x,y)?0),有 sinu(x,y)u(x,y); 1?cosu(x,y);
2ln?1?u(x,y)?u(x,y);tanu(x,y)u(x,y);arcsinu(x,y)u(x,y);
u(x,y);eu(x,y)?1u(x,y);同一元函n数一样,等价无穷小代换只能在乘法和除法中应用. arctanu(x,y)u(x,y);n1?u(x,y)?1例5 求 limx?0y?01?x?y?1
x?y解: 当 x?0,y?0时,有x?y?0.1?x?y?1limx?0y?01(x?y),所以 21?x?y?1x?y1(x?y) ?lim2x?0x?yy?01?.2
limx?0y?01?x?y?1x?y1?x?y?1(1?x?y?1)(1?x?y?1) 11?x?y?1?lim这个例子也可以用恒等变形法计算,如:
x?0y?0?limx?0y?01?.2精彩文档
实用标准文案
2.4 利用两个重要极限
1sinu(x,y)lim?1,lim?1?u(x,y)?u(x,y)?e 它们分别是一元函数中两个重u(x,y)?0u(x,y)?0u(x,y)要极限的推广.
例6 求极限 lim(1?x??y?a1)xyx2x?y .
解: 先把已知极限化为
1lim(1?)x??xyy?ax2x?y?1??lim?(1?)xy?x??xy?y?a?x2xy(x?y)x211?lim?, ,而 limx??xy(x?y)x??yy?ay?a(1?)yax当 x??,y?a时xy??,x2xy(x?y)11?0,所以 lim(1?)xy?e.
x??xyxyy?a?1?lim?(1?)xy???xy?故原式=xy?a??e. 例7 求 lim1a
sin(xy)极限.
x?0xy?asin(xy)sin(xy)?y.,当x?0,y?a时,xy?0,所以 xxy解: 因为
sin(xy)?1,再利用极限四则运算可得: xylimsin(xy)sin(xy)sin(xy)?limy.?limy.lim?a.·1=a.
x?0x?0y?axy?0xxyxyy?ay?a这个例子也可以用等价无穷小代换计算,如: 当 x?0,y?a时,xy?0 ,sin(xy)精彩文档
xy.