高中数学轻松搞定排列组合难题二十一种方法(含答案) 下载本文

行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,

54那么共有陈列方式的种数为A22A5A4

552. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有A22A5A5种

十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个

空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有C96种分法。

一班二班三班四班五班六班七班 将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板, m?1插入n个元素排成一排的n-1个空隙中,所有分法数为Cn?1

练习题:

1. 10个相同的球装5个盒中,每盒至少一有多少装法? C94

32 .x?y?z?w?100求这个方程组的自然数解的组数 C103 十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有C53,

12312C5?C5只含有1个偶数的取法有C5。再淘汰和C5,和为偶数的取法共有C5123C5?C5?9 小于10的偶数共9种,符合条件的取法共有C5

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出

它的反面,再从整体中淘汰.

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的

抽法有多少种?

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

5

解: 分三步取书得C62C42C22种方法,但这里出现重复计数的现象,不妨记6

本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记

22C62C4C2为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有A333种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有C62C42C22/A3种分法。

n平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以Ann(为均分的

组数)避免重复计数。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?

54C84C4/A2(C132)

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安

22/A2?90) 排2名,则不同的安排方案种数为______(C42C22A6十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演

出一个2人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有C32C32种,只会唱的5人中只

112C3C4种,只会唱的5人中只有2人选上唱歌人有1人选上唱歌人员C5员有C52C52种,由分类计数原理共有

112C3C4?C52C52种。 C32C32?C5

解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做

到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。

练习题:

1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34

2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共

6

有多少乘船方法. (27) 本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3

盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?

解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有C53 种

一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒 模型等,可使问题直观解决

练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) 十五.实际操作穷举策略

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 解:从5个球中取出2个与盒子对号有C52种还剩下3球3盒序号不能对应,

利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒

时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有2C52种

3号盒 4号盒 5号盒

对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收 到意想不到的结果

练习题:

1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)

2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种

534 7

13254

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×

11×13

依题意可知偶因数必先取2,再从其余5个因数中任取若干个

组成乘积,

135?C52?C5?C54?C5所有的偶因数为:C5

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共C84?12?58,每个四面体有

3对异面直线,正方体中的8个顶点可连成3?58?174对异面直线 分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题 逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略

十七.化归策略 例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3

111方队中选3人的方法有C3C2C1种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有C53C53选法所以从5×5

111C2C1选法。 方阵选不在同一行也不在同一列的3人有C53C53C3

处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走

到B的最短路径有多少种?(C73?35)

8