所以
S66a1?15d27d3???,故选A S1212a1?66d90d10二、填空题 27.?
23.解:数列?an?满足:a1?1,an?1?2an, n?1,2,3…,该数列为公比为2的等比数列,∴
2n?1?2n?1. a1?a2???an?2?14.解:设等差数列?an?的首项为a1,公差为d,由题意得4a1?4(4?1)d?14, 210(10?1)7(7?1)9(9?1)[10a1?d]?[7a1?d]?30,联立解得a1=2,d=1,所以S9=9?2??1?54
2225.解:由an?1?an?2(n?1)可得数列{an}为公差为2的等差数列,又a1?1,所以an?2n-1 三、解答题
1.解:设等比数列{an}的公比为q,则q≠0,a2==,a4=a3q=2q 所以+2q=,解得q1=,q2=3,
当q1=,a1=18.所以an=18×()n-1==2×33-n. 当q=3时,a1=,所以an=×3n-1=2×3n-3.
a1(q4?1)?1…① 2.解:设{an}的公比为q,由S4?1,S8?17知q?1,所以得
q?1a1(q8?1)q8?1?17……②由①、②式得整理得4?17解得q4?16 q?1q?1所以q=2或q=-2
12n?1 将q=2代入①式得a1?,所以a?15151(?1)n?2n?1 将q=-2代入①式得a1??,所以an?553.解析:解:∵10Sn=an2+5an+6,①∴10a1=a12+5a1+6,解之得a1=2或a1=3. 又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 ∵an+an-1>0,∴an-an-1=5(n≥2).
当a1=3时,a3=13,a15=73.a1,a3,a15不成等比数列∴a1≠3;
当a1=2时,a3=12,a15=72,有a32=a1a15,∴a1=2,∴an=5n-3.
附加题解:引入字母,转化为递归数列模型.
设第n次去健身房的人数为an,去娱乐室的人数为bn,则an?bn?150.
?an?929277an?1?bn?1?an?1?(150?an?1)?an?1?30即an?an?1?30. 10101010101077(an?1?100),于是an?100?(a1?100)()n?1 1010?an?100?即an7?100?()n?1?(a1?100).
10n???liman?100.故随着时间的推移,去健身房的人数稳定在100人左右. 4.解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1?n?2?,两式相减得
an?1?an?2an,an?1?3an?n?2?
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3得等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公差为d
由T3?15得,可得b1?b2?b3?15,可得b2?5 故可设b1?5?d,b3?5?d 又a1?1,a2?3,a3?9
由题意可得?5?d?1??5?d?9???5?3? 解得d1?2,d2?10
∵等差数列?bn?的各项为正,∴d?0 ∴d?2
n?n?1??2?n2?2n∴Tn?3n?2
2