金属材料答案 下载本文

第一章

6、实际金属晶体中存在哪些缺陷?它们对性能有什么影响?

答:点缺陷:空位、间隙原子、异类原子。点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。

线缺陷:位错。位错的存在极大地影响金属的机械性能。当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。当进行形变加工时,为错密度增加,σs将会增高。

面缺陷:晶界、亚晶界。亚晶界由位错垂直排列成位错墙而构成。亚晶界是晶粒内的一种面缺陷。

在晶界、亚晶界或金属内部的其他界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。晶界和亚晶界均可提高金属的强度。晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。

8、什么是固溶强化?造成固溶强化的原因是什么?

答:形成固溶体使金属强度和硬度提高的现象称为固溶强化。 固溶体随着溶质原子的溶入晶格发生畸变。晶格畸变随溶质原子浓度的提高而增大。晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。

9、间隔固溶体和间隔相有什么不同? 答:合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之一相同的固相称为固溶体。间隙固溶体中溶质原子进入溶剂晶格的间隙之中。间隙固溶体的晶体结构与溶剂相同。

第二章

1、金属结晶的条件和动力是什么?

答:液态金属结晶的条件是金属必须过冷,要有一定的过冷度。液体金属结晶的动力是金属在液态和固态之间存在的自由能差(ΔF)。

2、金属结晶的基本规律是什么?

答:液态金属结晶是由生核和长大两个密切联系的基本过程来实现的。液态金属结晶时,首先在液体中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。在这些晶体长大的同时,又出现新的品核并逐渐长大,直至液体金属消失。

3、在实际应用中,细晶粒金属材料往往具有较好的常温力学性能,细化晶粒、提高金属材料使用性能的措施有哪些? 答:(1) 提高液态金属的冷却速度,增大金属的过冷度。 (2) 进行变质处理。在液态金属中加入孕育剂或变质剂,增加晶核的数量或者阻碍晶核的长大,以细化晶粒和改善组织。(3) 在金属结晶的过程中采用机械振动、超声波振动等方法。 (4) 电磁搅拌。将正在结晶的金属置于一个交变的电磁场中,由于电磁感应现象,液态金属会翻滚起来,冲断正在结晶的树枝状晶体的晶枝,增加了结晶的核心,从而可细化晶粒。

4、如果其他条件相同,试比较在下列铸造条件下铸件晶粒的大小。

(1)金属模浇注与砂模浇注; (2)变质处理与不变质处理; (3)铸成薄件与铸成厚

件; (4)浇注时采用震动与不采用震动。 答:(1)金属模浇注比砂模浇注,铸件晶粒小; (2)变质处理比不变质处理,铸件晶粒小; (3)铸成薄件比铸成厚件,铸件晶粒小;(4)浇注时采用震动比不采用震动,铸件晶粒小。

5、为什么钢锭希望尽量减少柱状晶区?

答:柱状是由外往里顺序结晶的,品质较致密。但柱状品的接触面由于常有非金属夹杂或低熔点杂质而为弱面,在热轧、锻造时容易开裂,所以对于熔点高和杂质多的金届,例如铁、镍及其合金,不希望生成柱状晶。

6、将20kg纯铜与30 kg纯镍熔化后慢冷至如图l—6温度T1,求此时: ①两相的化学成分; ②两相的质量比; ③各相的质量分数; ④各相的质量。

解:①两相的化学成分L相成分:ω(Ni);50% ω(Cu)=50% ②两相质量比:合金成分:ω(Ni)=80% ω(Cu)=20% 二相的质量比:Qα/Qβ=(60-50)/(80-60)=0.5 ③各相的质量分数

二相的质量分数:ω(α)=(60-50)/(80-50)=33.3% ω(L)=1-33.3%=66.7%

④各相的质量。

二相质量:Qα=(20十30)×33.3%=16.65(kg)

QL=50一16.65=33.35(kg)

7、求碳质量分数为3.5%的质量为10kg的铁碳合金从液态缓慢冷却到共晶温度(但尚未发生共晶反应)时所剩下的液体的碳质量分数及液体的质量。 解:L中的碳质量分数:w(C)=4.3%

L中的质量分数: w (L)=(3.5-2.11)/(4.3-2.11)=63.5% L的质量:QL=10×63.5%=6.35(kg)

8、比较退火状态下的45钢、T8钢、T12钢的硬度、强度和塑性的高低,简述原因。

答:硬度:45钢最低,T8钢较高,T12钢最高。因为退火状态下的45钢组织是铁素体+珠光体,T8钢组织是珠光体,T12钢组织是珠光体+二次渗碳体。因为铁素体硬度低,因此45钢硬度最低。因为二次渗碳体硬度高,因此T12钢硬度最高。

强度:因为铁素体强度低,因此45钢强度最低。T8钢组织是珠光体,强度最高。T12钢中含有脆性的网状二次渗碳体,隔断了珠光体之间的结合,所以T12钢的强度比T8钢要低。但T12钢中网状二次渗碳体不多,强度降低不大,因此T12钢的强度比45钢强度要高。 塑性:因为铁素体塑性好,因此45钢塑性最好。T12钢中含有脆性的网状二次渗碳体,

因此T12钢塑性最差。T8钢无二次渗碳体,所以T8钢塑性较高。

9、同样形状的两块铁碳合金,其中一块石退火状态的15钢,一块是白口铸铁,用什么简便方法可迅速区分它们?

答:因为退火状态的15钢硬度很低,白口铸铁硬度很高。因此可以用下列方法迅速区分: (1)两块材料互相敲打一下,有印痕的是退火状态的15钢,没有印痕的是白口铸铁。 (2)用锉刀锉两块材料,容易锉掉的是退火状态的15钢,不容易锉掉的是白口铸铁。 (3)用硬度计测试,硬度低的是退火状态的15钢,硬度高的是白口铸铁。

10、为什么碳钢进行热锻、热轧时都要加热到奥氏体区?

答:因为奥氏体是面心立方晶格,其滑移变形能力大,钢处于奥氏体状态时强度较低,塑性较好,因此锻造或轧制选在单相奥氏体区内进行。

11、下列零件或工具用何种碳钢制造:手锯钢条、普通螺钉、车床主轴。 答:手锯锯条用T10钢制造。 普通螺钉用Q195钢、 Q215钢制造。 车床主轴用45钢制造。

12、为什么细晶粒钢强度高,塑性、韧性也好?

答:多晶体中,由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大。金属晶粒越细,晶界越多,变形抗力越大,金属的强度就越大。

多晶体中每个晶粒位向不一致。一些晶粒的滑移面和滑移方向接近于最大切应力方向(称晶粒处于软位向),另一些晶粒的滑移面和滑移方向与最大切应力方向相差较大(称晶粒处于硬位向)。在发生滑移时,软位向晶粒先开始。当位错在晶界受阻逐渐堆积时,其他晶粒发生滑移。因此多晶体变形时晶粒分批地逐步地变形,变形分散在材料各处。晶粒越细,金属的变形越分散,减少了应力集中,推迟裂纹的形成和发展,使金属在断裂之前可发生较大的塑性变形,从而使金属的塑性提高。

由于细晶粒金属的强度较高、塑性较好,所以断裂时需要消耗较大的功,因而韧性也较好。因此细晶强化是金属的一种很重要的强韧化手段。

13、与单晶体的塑性变形相比较,说明多晶体塑性变形的特点。

答:① 多晶体中,由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大。金属晶粒越细,品界越多,变形抗力越大,金属的强度就越大。

② 多晶体中每个晶粒位向不一致。一些晶粒的滑移面和滑移方向接近于最大切应力方向(称晶粒处于软位向),另一些晶粒的滑移面和滑移方向与最大切应力方向相差较大(称晶粒处于硬位向)。在发生滑移时,软位向晶粒先开始。当位错在晶界受阻逐渐堆积时,其他晶粒发生滑移。因此多晶体变形时晶粒分批地逐步地变形,变形分散在材料各处。晶粒越细,金属的变形越分散,减少了应力集中,推迟裂纹的形成和发展,使金属在断裂之前可发生较大的塑性变形,因此使金属的塑性提高。

14、金属塑性变形后组织和性能会有什么变化?

答:金属发生塑性变形后,晶粒发生变形,沿形变方向被拉长或压扁。当变形量很大时,晶粒变成细条状(拉伸时),金属中的夹杂物也被拉长,形成纤维组织。金属经大的塑性变形时,由于位错的密度增大和发生交互作用,大量位错堆积在局部地区,并相互缠结,形成不均匀的分布,使晶粒分化成许多位向略有不同的小晶块,而在晶粒内产生亚晶粒。金属塑性变形到很大程度(70%以上)时,由于晶粒发生转动,使备品粒的位向趋近于一致,形成特殊的择优取向,这种有序化的结构叫做形变织构。

金属发生塑性变形,随变形度的增大,金属的强度和硬度显著提高。塑性和韧性明显下降。这种现象称为加工硬化,也叫形变强化。另外,由于纤维组织和形变织构的形成,使金属的性能产生各向异性。

15、在图1—7所示的晶面、晶向中,哪些是滑移面?哪些是滑移方向?图中情况能否构成滑移系?

答:(a)FCC:(101) 晶面不是滑移面,[110]晶向是滑移方向,但两者不能构成滑移系。 (b)FCC:(111)晶面是滑移面,其上的[110]晶向也是滑移方向,两者能构成滑移系。 (c)BCC:(111)晶面不是滑移面,其上的[101]晶向不是滑移方向,两者不能构成滑移系。

(d)BCC:(110)晶面是滑移面,晶向也是滑移方向,但不在(110)晶面上,故两者不能构成滑移系。

16、用低碳钢钢板冷冲压成形的零件,冲压后发现各部位的硬度不同,为什么?

答:主要是由于冷冲压成形时,钢板形成零件的不同部位所需发生的塑性变形量不同,因而加工硬化程度不同所造成。

17、已知金属钨、铅的熔点分别为3380℃和327℃,试计算它们的最低再结晶温度,并分析钨在9000C加丁、铅在室温加丁时各为何种加工? 答:金属的最低再结晶温度为:T再=(0.35~0.4)T熔点

对金属钨:T熔点=273十3380=3653K

T再=(0.35~0.4)T熔点=l 279~146l K=1006~l188℃

在900℃对金属钨进行加工,略低于其最低再结晶温度,应属冷加工。

对金属铅:T熔点=273十327=600 K

T再=(0.35~0.4)T熔点=210~240 K=-63~-33℃

在室温(如23℃)对金属铅进行加工,明显高于其最低再结晶温度的上限-33℃,应属热加工。

18、何谓临界变形度?分析造成临界变形度的原因。

答:塑性变形后的金属再进行加热发生再结晶,再结晶后晶粒大小与预先变形度有关。使品粒发生异常长大的预先变形度称做临界变形度。 金属变形度很小时,因不足以引起再结晶,晶粒不变。当变形度达到2%~10%时,金属中少数晶粒变形,变形分布很不均匀,所以再结晶时生成的晶核少,晶粒大小相差极大,非常有利于晶粒发生吞并过程而很快长大,结果得到极粗大的晶粒。

19、在制造齿轮时,有时采用喷丸处理(将金属丸喷射到零件表面上),使齿面得以强化。试分析强化原因。 答:喷丸处理时,大量的微细金属丸被喷射到零件表面上,使零件表层发生一定的塑性变形,因而对零件表面产生了加工硬化效应,同时也在表面形成残余压应力,有助于提高零件的疲劳强度。

20、再结晶和重结晶有何不同?

答:再结晶是指冷变形(冷加工)的金属加热到最低再结晶温度以上,通过原子扩散,使被拉长(或压扁)、破碎的晶粒通过重新形核、长大变成新的均匀、细小的等轴晶,同时消除加工硬化现象,使金属的强度和硬度、塑性和韧性恢复至变形前的水平。对钢而言,再结晶

温度低于共析温度727℃,因此不会发生晶体结构类型的转变。

有些金属在固态下,存在两种或两种以上的晶格形式,如铁、钴、钛等。这类金属在冷却或加热过程中,其晶格形式会发生变化。金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象,称为同素异构转变,也叫做重结晶。重结晶也是一个通过原子扩散进行的形核、长大过程,但同时发生晶格结构类型的转变。

21、热轧空冷的45钢钢材在重新加热到超过临界点后再空冷下来时,组织为什么能细化? 答:热轧空冷的45钢在室温时组织为铁素体十索氏体。重新加热到临界点以上,组织转变为奥氏体。奥氏体在铁素体和渗碳体的界面处形核。由于索氏体中铁素体、渗碳体的层片细、薄,因此奥氏体形核数目多,奥氏体晶粒细小。奥氏体再空冷下来时,细小的奥氏体晶粒通过重结晶又转变成铁素体十索氏体,此时的组织就比热轧空冷的45钢组织细,达到细化和均匀组织的目的。

23、试述马氏体转变的基本特点。

答:过冷A转变为马氏体是低温转变过程,转变温度在MS~Mf,之间,其基本特点如下: (1)过冷A转变为马氏体是一种非扩散型转变。铁和碳原子都不进行扩散。马氏体就是碳α-Fe中的过饱和固溶体。过饱和碳使α-Fe的晶格发生很大畸变,产生很强的固溶强化。 (2)马氏体的形成速度很快。奥氏体冷却到MS以下后,无孕育期,瞬时转变为马氏体。 (3)马氏体转变是不彻底的。总要残留少量奥氏体。奥氏体中的碳质量分数越高,则MS、Mf 和越低,残余A质量分数越高。MS、Mf越低,残余A质量分数越高。 (4)马氏体形成时体积膨胀,在钢中造成很大的内应力,严重时导致开裂。

24、试比较索氏体和回火索氏体、马氏体和回火马氏体之间的形成条件、组织形态与性能上的主要区别。

答:索氏体是钢的过冷奥氏体在高温转变温度(620℃左右)等温转变或在正火条件下形成的主要组织。索氏体为层片状组织,即片状渗碳体平行分布在铁素体基体上。回火索氏体是钢经调质处理(淬火+高温回火)后形成的,淬火马氏体在高温回火条件下过饱和的碳原子全部脱溶析出为粒状渗碳体、自身转变为铁索体,即回火索氏体是细小的粒状渗碳体弥散的分布在铁素体基体上。由于粒状渗碳体比片状渗碳体对于阻止断裂过程的发展有利,所以在碳及合金元素质量分数相同时,索氏体和回火索氏体两者硬度相近,但是回火索氏体的强度、韧性、塑性要好得多。

马氏体是钢淬火后的主要组织,低碳马氏体为板条状、高碳马氏体为针状。马氏体存在有内应力,容易产生变形和开裂。马氏体是不稳定的,在工作中会发生分解,导致零件尺寸发生变化。高碳马氏体硬而脆,韧性很低。回火马氏体是淬火马氏体经低温回火形成的。回火马氏体由极细的ε碳化物和低过饱和度的α固溶体组成,低碳回火马氏体是暗板条状,高碳回火马氏体是黑针状。回火马氏体和马氏体相比,内应力小、韧性提高,同时保持了马氏体的高硬度和高耐磨性。

25、马氏体的本质是什么?它的硬度为什么很高? 为什么高碳马氏体的脆性大? 答:马氏体的本质:马氏体是碳在α-Fe中的过饱和固溶体。 由于过饱和的间隙碳原子造成晶格的严重畸变,形成强烈的应力场并与位错发生强烈的交互作用产生固溶强化。马氏体转变时在晶体内造成晶格缺陷密度很高的亚结构(板条状马氏体的高密度位错,片状马氏体的微细孪晶)阻碍位错运动,提高了马氏体的硬度(马氏体相变强化)。马氏体形成后,碳及合金元素向位错或其他缺陷扩散偏聚析出,钉扎位错,使位错

难以运动(马氏体时效强化)。因此马氏体的硬度很高。

高碳马氏体由于碳的过饱和度大,晶格严重畸变,淬火应力大,同时存在孪晶结构和高密度显微裂纹,所以脆性大,塑性、韧性极差。

26、为什么钢件淬火后一般不直接使用。需要进行回火?

答:钢件淬火后,为了消除内应力并获得所要求的组织和性能,必须将其加热到Acl以下的某一温度,保温一定时间进行回火处理。这是因为:第一,淬火后得到的是性能很脆的马氏体组织,并存在内应力,容易产生变形和开裂;第二,淬火马氏体和残余奥氏体都是不稳定组织,在工作中会发生分解,会导致零件尺寸的变化,而这对精密零件是不允许;第三,为了获得要求的强度、硬度、塑性和韧性,以满足零件的使用要求。

27、直径为6mm的共析钢小试样加热到相变点Al以上30℃,用图1—9所示的冷却曲线进行冷却,试分析所得到的组织,说明各属于什么热处理方法。 答:a:马氏体十残余奥氏体,单介质淬火(水冷)。 b:马氏体十残余奥氏体,分级淬火。 c:屈氏体十马氏体十残余奥氏体,单介质淬火(油冷)。

d:下贝氏体,等温淬火。 e:索氏体,正火。 f:珠光体,退火。

g:珠光体,等温退火。

28、调质处理后的40钢齿轮,经高频感应加热后的温度分布如图1-10所示。试分析高频感应加热水淬后,轮齿由表面到中心各区(Ⅰ,Ⅱ,Ⅲ)的组织。 答:加热到Ⅲ区的部分,加热温度丁低于相变临界点温度Ac1,不发生相变。水冷后40钢齿轮仍保持调质处理后的铁素体基体十粒状渗碳体(回火索氏体)组织,但是高于原调质处理的回火温度的部分中,粒状渗碳体变得较粗大。加热到Ⅲ区的部分组织为:回火索氏体。

加热到Ⅱ区的部分,加热温度为人A c3>T>Ac1“出现了部分奥氏体,所以加热时Ⅱ区部分的组织为:铁素体十奥氏体。水冷后Ⅱ区部分的组织为:铁素体+马氏体。

加热到I 区的部分,加热温度T>Ac3,已经完全奥氏体化,所以加热时I区部分的组织为:奥氏体。水冷后I 区部分的组织为:马氏体。

29、确定下列钢件的退火方法,并指出退火目的及退火后的组织。

⑴ 经冷轧后的钢板,要求降低硬度;⑵ ZG35的铸造齿轮;⑶改善T12钢的切削加工性能。 答:⑴ 再结晶退火。退火目的:消除加工硬化现象,恢复钢板的韧性和塑性。再经晶退火后的组织:生成与钢板冷轧前晶格类型相同的细小、等轴晶。冷轧钢板一般为低碳钢,再结晶退火后的组织为铁素体+珠光体。

⑵ 完全退火。退火目的:通过完全重结晶,使铸造过程中生成的粗大、不均匀的组织细化,消除魏氏组织,以提高性能,同时消除内应力。退火后的组织:铁素体+珠光体。

⑶ 球化退火。退火目的:使二次渗碳体及珠光体中的渗碳体球状化,以降低硬度,改善切削加工性能,并为以后的淬火做组织准备。退火后的组织:球化体(铁素体基体+球状渗碳体)。 30、说明直径为6mm的45钢退火试样分别经下列温度加热:700℃、760℃、840℃、1100℃,保温后在水中冷却得到的室温组织。

答:加热到1100℃保温后水冷的组织:粗大马氏体; 加热到840℃保温后水冷的组织:细小马氏体; 加热到760℃保温后水冷的组织:铁素体十马氏体;

加热到700℃保温后水冷的组织:铁素体十珠光体。

31、两个碳质量分数为1.2% 的碳钢薄试样,分别加热到780℃和900℃,保温相同时间奥氏体化后,以大于淬火临界冷却速度的速度冷却到室温。试分析:

(1) 哪个温度加热淬火后马氏体晶粒较粗大? (2) 哪个温度加热淬火后马氏体中碳质量分数较少? (3) 哪个温度加热淬火后残余奥氏体量较多? (4) 哪个温度加热淬火后未溶碳化物量较多?

答:(1)加热温度高者奥氏体粗大,粗大奥氏体冷却后转变组织也粗大,因此加热到900℃的试样淬火后马氏体晶粒较粗大。

(2)将试样加热到900℃时,其组织为单相奥氏体,奥氏体中的碳质量分数为1.2%。将试样加热到780℃时,其组织为奥氏体+渗碳体,由于有渗碳体,即一部分碳存在于渗碳体中,奥氏体中的碳质量分数必然降低(奥氏体中的碳质量分数可用铁碳相图确定:约为0.95% ),因此加热到780℃时的试样淬火后马氏体中的碳质量分数较少。

(3)奥氏体中碳质量分数越高,淬火后残余奥氏体量越多,因此加热到900℃的试样淬火后残余奥氏体量较多。

(4)将试样加热到900℃时,其组织为单相奥氏体,淬火后组织为马氏体+残余奥氏体。将试样加热到780℃时,其组织为奥氏体+渗碳体,淬火后组织为马氏体+渗碳体+残余奥氏体。故加热到780℃的试样淬火后未溶碳化物量较多。

32、指出下列工件的淬火温度及回火温度,并说明回火后获得的组织。 (1)45钢小轴(要求综合性能好);(2)60钢弹簧;(3)T12钢锉刀 答:(1)45钢小轴经调质处理,综合性能好,其淬火温度为830~840℃(水冷),回火温度为580~600℃。回火后获得的组织为回火索氏体。

(2)60钢弹簧的淬火温度为840℃(油冷)回火温度为480℃。回火后获得的组织为回火屈氏体。

(3)T12钢锉刀的淬火温度为770~780℃(水冷),回火温度为160~180℃ ,回火后获得的组织为回火马氏体+二次渗碳体+残余奥氏体。

33、两根45钢制造的轴,直径分别为l0 mm和100 mm,在水中淬火后,横截面上的组织和硬度是如何分布的?

答:45钢制造的轴,直径为10 mm时可认为基本淬透,横截面上外层为马氏体,中心为半马氏体(还有屈氏体十上贝氏体)。硬度基本均匀分布。直径为100 mm时,轴表面冷速大,

越靠近中心冷速越小。横截面上外层为马氏体,靠近外层为油淬火组织:马氏体十屈氏体十上贝氏体,中心广大区域为正火组织:索氏体。硬度不均匀,表面硬度高,越靠近中心硬度越低。

34、甲、乙两厂生产同一种零件,均选用45钢,硬度要求220~250HB,甲厂采用正火,乙厂采用调质处理,均能达到硬度要求,试分析甲、乙两厂的组织和性能差别。

答:选用45钢生产同一种零件,甲厂采用正火,其组织为铁素体+索氏体。乙厂采用调质处理,其组织为回火索氏体。索氏体为层片状组织,即片状渗碳体平行分布在铁素体基体上,回火索氏体是细小的粒状渗碳体弥散的分布在铁素体基体上。由于粒状渗碳体比片状渗碳体对于阻止断裂过程的发展有利,即两者强度、硬度相近,但是回火索氏体的韧性、塑性要好得多。所以乙厂生产的零件性能要更好。

35、试说明表面淬火、渗碳、氮化处理工艺在选用钢种、性能应用范围等方面的差别。 答:表面淬火一般用于中碳钢和中碳合金钢,如45、40Cr、40MnB钢等。这类钢经预先热处理(正火或调质)后表面淬火,心部保持较高的综合机械性能,而表面具有较高的硬度(50HRC)和耐磨性,主要用于轴肩部位、齿轮。高碳钢也可表面淬火,主要用于受较小冲击和交变载荷的工具、量具等。灰口铸铁制造的导轨、缸体内壁等常用表面淬火提高硬度和耐磨性。

渗碳一般用于低碳钢和合金渗碳钢。渗碳使低碳钢件表面获得高碳浓度(碳质量分数约为1),经过适当热处理后,可提高表面的硬度、耐磨性和疲劳强度,而心部依然保持良好的塑性和韧性,因此渗碳主要用于同时受严重磨损和较大冲击的零件,如齿轮、活塞销、套筒等。

氮化钢中一般含有Al、Cr、Mo、W、V等合金元素,使生成的氮化物稳定,并在钢中均匀分布,提高钢表面的硬度,在也不降低,常用的氮化钢有35CrAlA、38CrMoAlA、38CrWVAlA等。碳钢及铸铁也可用氮化提高表面的硬度。氮化的目的在于更大地提高零件的表面硬度和耐磨性,提高疲劳强度和抗蚀性。由于氮化工艺复杂,时间长,成本高,一般只用于耐磨性和精度都要求较高的零件,或要求抗热、抗蚀的耐磨件,如发动机汽缸、排气阀、精密丝杠、镗床主轴汽轮机阀门、阀杆等。

36、试述固溶强化、加工硬化和弥散强化的强化原理。

答:金属材料的强度(主要指屈服强度)反映金属材料对塑性变形的抗力。金属材料塑性变形本质上大多数情况下是由材料内部位错运动引起的。凡是阻碍位错运动的因素都使金属材料强化。

固溶强化原理:固溶体随着溶质原子的溶人晶格发生畸变,品格畸变增大了位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。这种通过形成固溶体使金属强度和硬度提高的现象称为固溶强化。

加工硬化原理:金属发生塑性变形时,位错密度增加,位错间的交互作用增强,相互缠结,造成位错运动阻力的增大,引起塑性变形抗力提高。另一方面由于晶粒破碎细化,晶界增多。由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大,从而使强度得以提高。金属发生塑性变形,随变形度的增大,金属的强度和硬度显著提高,塑性和韧性明显下降。这种现象称为加工硬化,也叫形变强化。

弥散强化原理:许多金属材料的组织由基体(常为固溶体)和第二相组成,第二相一般为金属化合物。当第二相以细小质点的形态均匀、弥散分布在合金中时,一方面由于第二相和基体之间的界面(相界)增加,造成相界周围基体品格畸变,使位错运动受阻,增加了滑移

抗力,从而强度得到提高。另一方面第二相质点本身就是位错运动的障碍物,位错移动时不能直接越过第二相质点。在外力作用下,位错可以环绕第二相质点发生弯曲,位错移过后,在第二相质点周围留下位错环。这增加了位错运动的阻力,也使滑移抗力增加。以上2个原因使金属材料得以强化。第二相以细小质点的形态均匀、弥散分布在合金中使合金显著强化的现象称为弥散强化。

37、合金元素提高钢的回火稳定性的原因何在? 答:合金元素在回火过程中推迟马氏体的分解和残余奥氏体的转变(即在较高温度才开始分解和转变);提高铁元素的再结晶温度,使碳化物难以聚集长大而保持较大的弥散度,因此提高了钢对回火软化的抗力,即提高了钢的回火稳定性。

38、什么是钢的回火脆性?如何避免?

答:钢在回火过程中出现的冲击韧性降低的现象标为回火脆性。回火后快冷(通常用油冷),抑制杂质元素在晶界偏聚,可防止其发生。钢中加入适当Mo或W[ω(Mo)=0.5%,ω(W)=1%],因强烈阻碍和延迟杂质元素等往晶界的扩散偏聚,也可基本上消除这类脆性。

39、为什么说得到马氏体随后回火处理是钢的最经济而又最有效的强韧化方法?

答:淬火形成马氏体时,马氏体中的位错密度增高,而屈服强度是与位错密度成正比的。马氏体形成时,被分割成许多较小的取向不同的区域(马氏体束),产生相当于晶粒细化的作用,马氏体中的合金元素也有固溶强化作用,马氏体是过饱和固溶体,回火分析出碳化物,使间隙固溶强化效应大大减小,但使韧性大大改善,同时析出的碳化物粒子能造成强烈的第二相强化。所以,获得马氏体并对其回火是钢的最经济和最有效的综合强化方法。

40、为什么碳质量分数为0.4%,铬质量分数为12%的铬钢属于过共析钢,而碳质量分数为1.0%、铬质量分数为12%的钢属于莱氏体钢?

答:因加入12%铬,使共析点S和E点碳质量分数降低,即S点和E点左移,使合金钢的平衡组织发生变化(不能完全用Fe-Fe3C来分析),碳质量分数为0.4%、铬质量分数为12%的铬钢出现了二次碳化物,因而属于过共析钢;而碳质量分数为1.0%、铬质量分数为12%的钢已具有莱氏体钢。

43、用T10钢制造形状简单的车刀,其工艺路线为: 锻造一热处理一机加丁一热处理一磨加工。

①写出其中热处理工序的名称及作用。②制定最终热处理(磨加工前的热处理)的工艺规范,并指出车刀在使用状态下的显微组织和大致硬度。

答:① 锻造一正火一球化退火一机加工一淬火、低温回火一磨加工。

正火:得到S+二次渗碳体、细化组织,消除网状二次渗碳体,为球化退火做准备。 球化退火:使二次渗碳体及珠光体中的渗碳体球状化,得到球状珠光体。改善机加工性能,同时为淬火做组织准备。

淬火:得到马氏体十粒状渗碳体十残余奥氏体。提高硬度,提高车刀的耐磨性。 低温回火:得到回火马氏体十粒状渗碳体十残余奥氏体,降低淬火应力,提高工件韧性,同时保证淬火后的高硬度和高耐磨性。

② 淬火:加热温度760℃,保温后水冷

低温回火:加热温度150—250℃,保温后(<2h)炉冷或空冷。

成品组织:回火马氏体十碳化物十残余奥氏体; 硬度:58—64HRC

第三章

1、说出Q235A、15、45、65、T8、T12等钢的钢类、碳的质量分数,各举出一个应用实例。

答:如表1-1所示 Q235A 15 45 65 T8 T12 钢 类 碳素结构钢 优质碳素结构钢 优质碳素结构钢 优质碳素结构钢 碳素工具钢 碳素工具钢 碳质量分数 0.14%~0.22% 约0.15% 0.42%~0.50% 0.62%~0.70% 0.75%~0.84% 1.15%~1.24% 应用实例 钢筋、钢板、钢管等 冲压件及焊接件,经热处理后可制造轴、销等零件 齿轮、轴类、套筒等零件 弹簧 冲头、凿子、锤子等工具 锉刀、刮刀等刃具和量规、样套等量具

2、为什么低合金高强钢用锰作为主要的合金元素?

答:我国的低合金结构钢基本上不用贵重的Ni、Cr等元素,而以资源丰富的Mn为主要元素。锰除了产生较强的固溶强化效果外,因它大大降低奥氏体分解温度,细化了铁素体晶粒,并使珠光体片变细,消除了晶界上的粗大片状碳化物,提高了钢的强度和韧性,所以低合金高强钢用锰作为主要的合金元素。

3、试述渗碳钢和调质钢的合金化及热处理特点。

答:渗碳钢的合金化特点是加入提高淬透性的合金元素如Cr、Ni、Mn等,以提高热处理后心部的强度和韧性;加入阻碍奥氏体晶粒长大的元素如Ti、V、W、Mo等,形成稳定的合金碳化物。并增加渗碳层的硬度,提高耐磨性。热处理特点是渗碳后直接淬火,再低温回火,得到的表面渗碳层组织由合金渗碳体与回火马氏体及少量残余奥氏体组成,心部多数情况为屈氏体、回火马氏体和少量铁素体。调质钢的合金化特点是加入提高淬透性的合金元素如Cr、Mn、Ni、Si、B等,并可提高钢的强度,加入防止第二类回火脆性的元素如Mo、W;热处理特点是淬火(油淬)后高温回火,得到的组织是回火索氏体。

4、有两种高强螺栓,一种直径为10mm,另一种直径30mm,都要求有较高的中和机械性能:σb≥800MPa,αk≥600KJ/m2。试问应选择什么材料及热处理工艺?

答:为满足机械性能要求,应考虑材料的淬透性能。对于直径为30mm的螺栓,选择40Cr,该钢有较好的渗透性。热处理工艺为850℃油淬,520℃回火;对于直径位为10mm的螺栓,选择45钢代替40Cr,可节约Cr且达到基本要求,热处理工艺为840℃水淬,600℃回火。

5、为什么合金弹簧钢以硅为重要的合金元素?为什么要进行中温回火?

答:硅元素的主要作用在于提高合金的淬透性,同时提高屈强比。进行中温回火的目的在于获得回火屈氏体组织,具有很高的屈服强度,弹性极限高,并有一定的塑性和韧性。

6、轴承钢为什么要用铬钢?为什么对非金属夹杂限制特别严格?

答:铬能提高淬透性,形成合金渗碳体(Fe, Cr)3C呈细密、均匀分布,提高钢的耐磨性,特别是疲劳强度,因此轴承钢以铬作为基本合金元素。轴承钢中非金属夹杂物和碳化物的不均匀性对钢的性能,尤其是对接触疲劳强度影响很大,因为夹杂物往往是接触疲劳破坏的发源点,因此,轴承钢对非金属夹杂物限制特别严格。

7、简述高速钢的成分、热处理和性能特点,并分析合金元素的作用。 答:高速钢的成分特点是:(1)高碳,其碳质量分数在0.70%以上,最高可达1.50%左右,它一方面能保证与W、Cr、V等形成足够数量的碳化物;另一方面还要有一定数量的碳溶于奥氏体中,以保证马氏体的高硬度。(2)加入W、Cr、V、Mo等合金元素。加入Cr提高淬透性,几乎所有高速钢的铬质量分数均为4%。铬的碳化物Cr23C6在淬火加热时差不多全部溶于奥氏体中,增加过冷奥氏体的稳定性,大大提高钢的淬透性。铬还能提高钢的抗氧化、脱碳的能力。加入W、Mo保证高的热硬性,在退火状态下,W、Mo以型碳化物形式存在。这类碳化物在淬火加热时较难溶解,加热时,一部分碳化物溶于奥氏体,淬火后W、Mo存在于马氏体中,在随后的560℃回火时,形成W2C或Mo2C弥散分布,造成二次硬化。这种碳化物在500~600℃温度范围内非常稳定,不易聚集长大,从而使钢具有良好的热硬性;未溶得碳化物能起到阻止奥氏体晶粒长大及提高耐磨性的作用。V能形成VC(或V4C3),非常稳定,极难熔解,硬度极高(大大超过的硬度)且颗粒细小,分布均匀,能大大提高钢的硬度和耐磨性。同时能阻止奥氏体晶粒长大,细化晶粒。热处理特点是1220~1280℃淬火+550~570℃三次回火,得到的组织为回火马氏体、细粒状碳化物及少量残余奥氏体。性能特点是具有高硬度、高耐磨性、一定的塑性和韧性。其在高速切割中刃部温度达600℃时,其硬度无明显下降。

8、W18Cr4V钢的Ac1约为820℃,若以一般工具钢Ac1+(30~50)℃的常规方法来确定其淬火加热温度,最终热处理后能否达到高速切削刀具所要求的性能?为什么?其实际淬火温度是多少?

答:若按照Ac1+(30~50)℃的常规方法来确定W18Cr4V钢淬火加热温度,淬火加热温度为850~870℃,不能达到高速切削刀具要求的性能。因为高速钢中含有大量的W、Mo、Cr、V的难溶碳化物,它们只有在1200℃以上才能大量地溶于奥氏体中,以保证钢淬火、回火后获得高的热硬性,因此其淬火加热温度非常高,一般为1220~1280℃。

9、不锈钢的固溶处理与稳定化处理的目的各是什么?

答:不锈钢固溶处理的目的是获得单相奥氏体组织,提高耐蚀性。稳定化处理的目的是使溶于奥氏体中的碳与钛以碳化钛的形式充分析出,而碳不再同铬形成碳化物,从而有效地消除了晶界贫铬的可能,避免了晶间腐蚀的产生。

10、试分析20CrMnTi钢和1Cr18Ni9Ti钢中Ti的作用。 答:20CrMnTi钢种Ti的作用是阻止渗碳时奥氏体晶粒长大、增加渗碳层硬度和提高耐磨性。1Cr18Ni9Ti钢中Ti的作用是优先与碳形成稳定化合物,避免晶界贫铬,防止晶间腐蚀,提高耐蚀性。

11、试分析合金元素Cr在40Cr、GCr15、CrWMn、1Cr13、1Cr18Ni9Ti、4Cr9Si2等钢中的作用。

答:在40Cr中:提高淬透性,形成合金铁素体,提高钢的强度。

在GCr15中:提高淬透性,形成合金渗碳体(Fe, Cr)3C呈细密、均匀分布,提高钢的耐磨性,特别是疲劳强度。

在CrWMn中:提高淬透性。

在1Cr13中:提高钢基体的电极电位,使钢的耐蚀性提高。

在1Cr18Ni9Ti中:提高基体的电极电位,在氧化性介质中极易钝化,形成致密和稳定的氧化膜,提高耐蚀性、抗氧化性,并有利于热强性,提高淬透性。

在4Cr9Si2中:提高抗氧化性,并有利于热强性,提高淬透性。

12、试就下列四个钢号:20CrMnTi、65、T8、40Cr讨论下列问题。在加热温度相同的情况下,比较其淬透性和淬硬性,并说明理由;各种钢的用途、热处理工艺、最终的组织。 答:(1) 加热温度相同的情况下,淬透性20CrMnTi>40Cr>T8>65,淬硬性T8>65>40Cr>20CrMnTi。决定淬透性的因素是碳质量分数和合金元素,Cr、Mn等能显著提高淬透性,合金钢的淬透性一般要好于碳钢。决定淬硬性的因素主要是马氏体的碳质量分数。

(2) 如下表所示。 用途 热处理工艺 渗碳—淬火—低温回火(870℃油淬+200℃回火) 淬火+中温回火 最终组织 表面为合金渗碳体、回火M和少量残余奥氏体,心部多数情况下为T、回火M和少量铁素体 回火T 回火M 汽车、拖拉机上的变速箱20CrMnTi 齿轮等重要零件 65 T8 40Cr 弹簧 冲头、凿子、锤子等工具 淬火+低温回火 连杆螺栓、进气阀、重要齿轮、轴类件 870℃油淬+520℃回火 回火S 调质处理+表面淬火+低温回火 表面回火M、心部回火S

14、要使球墨铸铁的基本组织为铁素体、珠光体或下贝氏体,工艺上应如何控制?

答:要得到铁素体基体的球墨铸铁,应进行退火处理;要得到珠光体基体的球墨铸铁,应进行正火处理;要得到下贝氏体基体的球墨铸铁,则进行等温淬火。

15、有一灰口铸铁铸件,经检查发现石墨化不完全,尚有渗碳体存在。试分析其原因.并提出使这一铸件完全化的方法。

答:原因可能是铸铁结晶时冷却速度太快,碳原子不能充分扩散以石墨的形式析出,析出了渗碳体。要使该铸件完全石墨化,应进行高温退火,使渗碳体分解成石墨。如为共析渗碳体,可加热到550℃以上并长时间保温,将共析渗碳体分解为石墨和铁素体。

16、试述石墨形态对铸铁性能的影响。

答:石墨强度、韧性极低,相当于钢基体上的裂纹或空洞,它减小基体的有效截面,并引起应力集中。普通灰铸铁和孕育铸铁的石墨呈片状,对基体的严重割裂作用使其抗拉强度和塑性都很低。球墨铸铁的石墨呈球状,对基体的割裂作用显著降低,具有很高的强度,又有良好的塑性和韧性,其综合机械性能接近于钢。蠕墨铸铁的石墨形态为蠕虫状,虽与灰铸铁的片状石墨类似,但石墨片的长厚比较小,端部较钝,对基体的割裂作用减小,它的强度接近于球墨铸铁,且有一定的韧性,较高的耐磨性。可锻铸铁的石墨呈团絮状,对基体的割裂作用较小,具有较高的强度、一定的延伸率。

17、试比较各类铸铁之间性能的优劣顺序,与钢相比较铸铁性能有什么优缺点?

答:铸铁性能优劣排序为:球墨铸铁、可锻铸铁、蠕墨铸铁、灰铸铁。与钢相比,铸铁具有以下性能特点:(1) 由于石墨的存在,造成脆性切削,铸铁的切削加工性能优异;(2) 钢铁的铸造性能良好,铸件凝固时形成石墨产生的膨胀,减小了铸件体积的收缩,降低了铸件中的内应力;(3) 石墨有良好的润滑作用,并能储存润滑油,使铸件有良好的耐磨性能;(4) 石墨对振动的传递起削弱作用,使铸铁有很好的抗震性能;(5) 大量石墨的割裂作用,使铸铁对缺口不敏感。其主要缺点是韧性、塑性较低。

18、为什么一般机器的支架、机床的床身常用灰口铸铁制造?

答:铸铁的生产设备和工艺简单。价格便宜,并具有许多优良的使用性能和工艺性能,其中灰口铸铁是应用最广泛的,尽管其抗拉强度和塑性都较低,但其良好的减振性能,能够满足一般机器的支架、机床的床身等使用场合。

19、铝硅合金为什么要进行变质处理?

答:一般情况下,铝硅合金的共晶体由粗针状硅晶体和α固溶体组成,强度和塑性都较差;经变质处理后的组织是细小均匀的共晶体加初生α固溶体,合金的强度和塑性显著提高,因此,铝硅合金要进行变质处理。

20、指出下列铜合金的类别、用途:H80、H62、HPb63-3、HNi65-5、QSn6.5-0.1、QBe2。

答:如下表所示。 合金牌号 H80 H62 HPb63-3 HNi65-5 QSn6.5-0.1 QBe2 类 别 单相黄铜 双相黄铜 铅黄铜 镍黄铜 锡青铜 铍青铜 薄壁管、装饰品 机械及电气零件、铆钉、螺帽、垫圈、散热器及焊接件、冲压件 钟表零件、汽车、拖拉机及一般机器零件 船舶用冷凝管、电机零件 精密仪器中的耐磨零件盒抗磁元件、弹簧、艺术品 重要的弹簧及弹性元件、耐磨元件、高压高速高温轴承、钟表齿轮、罗盘零件 用 途 第8章

1、机械零件正确选材的基本原则是什么? 答:机械零件选材的最基本原则有:

①使用性能原则:优异的使用性能,材料的使用性能应满足使用要求。

②工艺性能原则:保证零件便于加工制造,材料的工艺性能应满足生产工艺的要求。 ③经济性原则:便宜的价格,采用便宜的材料,把总成本降至最低,取得最大的经济材效益。

第九章

1、机床变速齿轮常用中碳钢或中碳合金钢制造,它的工艺路线为:下料-锻造-正火-粗加工-调质-精加工-轮齿高频淬火及低温回火-精磨,试分析正火处理、调质处理和高频淬火及低温回火的目的。 答:在采用中碳钢或中碳合金钢制造齿轮的工艺路线中,料坯在锻造后,首先经过正火处理,工件加热至Ac3以上30~50℃,这样可使正火后的组织为F+S。细化和均匀组织,改善切削性能。调质处理得到回火S,其综合机械性能(包括强度、塑性和韧性)好,这是由于回火S中的渗碳体为粒状,对阻止裂纹的扩展有利。精加工后轮齿还要经过高频淬火及低温回火处理,这是由于高频淬火后,表面组织为隐晶马氏体,提高了表面硬度,提高了耐磨性。心部仍为回火S组织,保持较高的综合机械性能。低温回火可以消除淬火引起的内应力,防止工件变形与开裂,以及保证工件的尺寸精度,同时保持所需的机械性能。

3、用20CrMnTi钢制造汽车齿轮,加工工艺路线为:下料-锻造-正火-切削加工-渗碳、淬火及低温回火-喷丸-磨削加工,分析渗碳、淬火及低温回火处理及喷丸处理的目的。 答:汽车齿轮通常受力较大,受冲击频繁,其耐磨性、疲劳强度、心部强度及冲击韧度等性能指标均较高。为此,在切削加工后,工件还需要经过渗碳、淬火及低温回火处理。渗碳表面处理的目的是增加表面层的碳质量分数并获得一定的浓度梯度,通常表面的碳质量分数可以达到约1.0%,随后的淬火+低温回火,使得表面组织为高碳回火马氏体+碳化物+残余奥氏体,强度特别是疲劳强度、耐磨性和冲击韧度均能达到相当高的程度,而心部组织为低碳回火马氏体,具有良好的韧性和塑性。喷丸处理使表面微层加工硬化,同时使表面压应力增大,疲劳强度进一步提高。

4、高精度磨床主轴,要求变形小,表面硬度高(>900HV),心部强度高,并有一定韧性。问应选用什么材料?采用什么工艺路线?

答:由于高精度磨床主轴,要求变形小,表面硬度高(>900HV),且心部强度高,并有一定韧性,因此应选用中碳合金钢,采用38CrMoAl钢制造。考虑到对表面硬度的要求,可采用氮化处理。采用的工艺路线为:毛坯-预先热处理(正火)-粗加工-调质-精加工-氮化处理-精磨。