Êý¾Ý½á¹¹µ¼ÂÛÕæÌâ·ÖÀàÕûÀíÏêϸ ÏÂÔØ±¾ÎÄ

18.ÏßÐÔ±íÖÐËùº¬½áµãµÄ¸öÊý³ÆÎª______¡£

19.ÏòÒ»¸öÕ»¶¥Ö¸ÕëΪtopµÄÁ´Õ»ÖвåÈëÒ»¸öнáµã*pʱ£¬Ó¦Ö´ÐÐ______ºÍtop=p²Ù×÷¡£

20.ÉèÒ»¸ö˳ÐòÕ»S£¬ÔªËØs1£¬s2£¬s3£¬s4£¬s5£¬s6ÒÀ´Î½øÕ»£¬Èç¹û6¸öÔªËØµÄÍËջ˳ÐòΪs2£¬s3£¬s4£¬s6£¬s5£¬s1£¬Ôò˳ÐòÕ»µÄÈÝÁ¿ÖÁÉÙΪ______¡£ 35.Éè˳Ðò±ívaÖеÄÊý¾ÝÔªËØµÝÔöÓÐÐò¡£ÊÔ±àдË㷨ʵÏÖ½«x²åÈ뵽˳Ðò±íµÄÊʵ±Î»ÖÃÉÏ£¬ÒÔ±£³Ö¸Ã

±íµÄÓÐÐòÐÔ¡£ 3.ÈôÏßÐÔ±í×î³£ÓõIJÙ×÷ÊÇ´æÈ¡µÚi¸öÔªËØ¼°ÆäǰÇ÷µÄÖµ£¬ÄÇô×î½ÚÊ¡²Ù×÷ʱ¼äµÄ´æ´¢·½Ê½ÊÇ£¨ £© A.µ¥Á´±í B.Ë«Á´±í C.µ¥Ñ­»·Á´±í D.˳Ðò±í

4.Éèµ¥Á´±íÖÐÖ¸ÕëpÖ¸Ïò½áµãA£¬ÒªÉ¾³ýAÖ®ºóµÄ½áµã(Èô´æÔÚ)£¬ÔòÐÞ¸ÄÖ¸ÕëµÄ²Ù×÷Ϊ£¨ £© A.p¡ª>next=p¡ª>next¡ª>next B.p=p¡ª>next C.p=p¡ª>next¡ª>next D.p¡ª>next=p 5.ÏòÒ»¸öÕ»¶¥Ö¸ÕëΪhsµÄÁ´Õ»ÖвåÈëÒ»¸ö*s½áµãʱ£¬Ó¦Ö´ÐеIJÙ×÷Ϊ£¨ £© A.hs¡ª>next=s; B.s¡ª>next=hs;hs=s;

C.s¡ª>next=hs¡ª>next;hs¡ª>next=s; D.s¡ª>next=hs;hs=hs¡ª>next;

6.ÉèÑ­»·¶ÓÁеÄÔªËØ´æ·ÅÔÚһάÊý×éQ[0¨E30]ÖУ¬¶ÓÁзǿÕʱ£¬frontָʾ¶ÓÍ·ÔªËØµÄǰһ¸öλÖã¬rearָʾ¶ÓÎ²ÔªËØ¡£Èç¹û¶ÓÁÐÖÐÔªËØµÄ¸öÊýΪ11£¬frontµÄֵΪ25£¬ÔòrearÓ¦Ö¸ÏòµÄÔªËØÊÇ£¨ £© A.Q[4] B.Q[5] C.Q[14] D.Q[15]

7.¶¨Òå¶þάÊý×éA[1¨E8£¬0¨E10]£¬ÆðʼµØÖ·ÎªLOC£¬Ã¿¸öÔªËØÕ¼2L¸ö´æ´¢µ¥Ôª£¬ÔÚÒÔÐÐÐòΪÖ÷ÐòµÄ´æ´¢·½Ê½Ï£¬Ä³Êý¾ÝÔªËØµÄµØÖ·ÎªLOC+50L£¬ÔòÔÚÒÔÁÐÐòΪÖ÷ÐòµÄ´æ´¢·½Ê½Ï£¬¸ÃÔªËØµÄ´æ´¢µØÖ·Îª£¨ £©

A.LOC+28L B.LOC+36L C.LOC+50L D.LOC+52L

18.ÔÚË«Á´±íÖУ¬´æ´¢Ò»¸ö½áµãÓÐÈý¸öÓò£¬Ò»¸öÊÇÊý¾ÝÓò£¬ÁíÁ½¸öÊÇÖ¸ÕëÓò£¬·Ö±ðÖ¸Ïò____ºÍ_____¡£ 19.ÔÚÓÐn¸öÔªËØµÄÁ´¶ÓÁÐÖУ¬Èë¶ÓºÍ³ö¶Ó²Ù×÷µÄʱ¼ä¸´ÔÓ¶È·Ö±ðΪ______ºÍ______¡£ 20.ÔÚÕ»½á¹¹ÖУ¬ÔÊÐí²åÈëµÄÒ»¶Ë³ÆÎª______;ÔÚ¶ÓÁнṹÖУ¬ÔÊÐí²åÈëµÄÒ»¶Ë³ÆÎª______¡£ 21.ÔÚÑ­»·¶ÓÁÐÖУ¬´æ´¢¿Õ¼äΪ0~n-1¡£Éè¶ÓÍ·Ö¸ÕëfrontÖ¸Ïò¶ÓÍ·ÔªËØÇ°Ò»¸ö¿ÕÏÐÔªËØ£¬¶ÓβָÕëÖ¸Ïò¶ÓÎ²ÔªËØ£¬ÄÇôÆä¶Ó¿Õ±ê־Ϊrear=front£¬¶ÓÂú±ê־Ϊ______¡£

3.ÔÚµ¥Á´±íÖУ¬´æ´¢Ã¿¸ö½áµãÐèÒªÓÐÁ½¸öÓò£¬Ò»¸öÊÇÊý¾ÝÓò£¬ÁíÒ»¸öÊÇÖ¸ÕëÓò£¬Ö¸ÕëÓòÖ¸Ïò¸Ã½áµãµÄ£¨£© A.Ö±½ÓǰÇ÷ B.Ö±½Óºó¼Ì C.¿ªÊ¼½áµã D.Öն˽áµã

4.½«Á½¸ö¸÷ÓÐn¸öÔªËØµÄÓÐÐò±íºÏ²¢³ÉÒ»¸öÓÐÐò±í£¬Æä×îÉٵıȽϴÎÊýΪ£¨£© A.n B.2n-1 C.2n D.n2 5.Õ»ºÍ¶ÓÁй²Í¬¾ßÓеÄÌØµãÊÇ£¨ £©

A.¶¼ÊÇÏȽøºó³ö B.¶¼ÊÇÏȽøÏȳö C.Ö»ÔÊÐíÔÚ¶Ëµã½øÐвÙ×÷ÔËËã D.¼ÈÄÜÏȽøÏȳö£¬Ò²ÄÜÏȽøºó³ö 6.ÈôÓÃÒ»¸öÓÐ6¸öµ¥ÔªµÄÊý×éÀ´ÊµÏÖÑ­»·¶ÓÁУ¬rearºÍfrontµÄ³õÖµ·Ö±ðΪ0ºÍ3¡£Ôò´Ó¶ÓÁÐÖÐɾ³ýÒ»¸öÔªËØ£¬ÔÙÌí¼ÓÁ½¸öÔªËØºó£¬rearºÍfrontµÄÖµ·Ö±ðΪ£¨£© A.1ºÍ5 B.2ºÍ4 C.4ºÍ2 D.5ºÍ1 7.Êý×éA[0..5][0..5]µÄÿ¸öÔªËØÕ¼5¸ö×Ö½Ú£¬½«ÆäÒÔÁÐΪÖ÷Ðò´æ´¢ÔÚÆðʼµØÖ·Îª1000µÄÄÚ´æµ¥ÔªÖУ¬ÔòÔªËØA£Û5£Ý£Û5£ÝµÄµØÖ·ÊÇ£¨ £© A.1175 B.1180 C.1205 D.1210

18.ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖеÚi¸öÔªËØ£¨1¡Üi¡Ün£©Ö®Ç°²åÈëÒ»¸öÔªËØÊ±£¬ÐèÏòºóÒÆ¶¯______¸öÔªËØ¡£ 24.Á½¸ö´®ÊÇÏàµÈµÄ£¬µ±ÇÒ½öµ±Á½¸ö´®µÄ³¤¶ÈÏàµÈÇÒ________µÄ×Ö·û¶¼Ïàͬ¡£

34.ÉèÁ½¸öÊý¾ÝÔªËØ¾ùΪÕûÐÍÊý¾ÝµÄÏßÐÔ±íA=(a1£¬a2£¬¡­£¬an)ºÍB=(b1£¬b2£¬¡­£¬bm)¡£Èôn=mÇÒai=bi£¨i=1£¬2,¡­£¬n£©ÔòÈÏΪA=B£»Èôai=bi£¨i=1£¬2,¡­£¬j£©ÇÒaj+1

5

3.ÏßÐÔ±í²ÉÓÃÁ´Ê½´æ´¢½á¹¹Ê±£¬ÒªÇóÄÚ´æÖпÉÓô洢µ¥ÔªµÄµØÖ·( )

A.±ØÐëÊÇÁ¬ÐøµÄ B.±ØÐëÊDz¿·ÖÁ¬ÐøµÄ C.Ò»¶¨ÊDz»Á¬ÐøµÄ D.Á¬ÐøºÍ²»Á¬Ðø¶¼¿ÉÒÔ 4.ÉèhÊÇÖ¸Ïò·Ç¿Õ´ø±íÍ·½áµãµÄÑ­»·Á´±íµÄÍ·Ö¸Õ룬pÊǸ¨ÖúÖ¸Õë¡£Ö´ÐгÌÐò¶Î p=h;

while (p->next->next!=h) p=p->next; p->next=h;

ºó£¨ÆäÖУ¬p->nextΪpÖ¸Ïò½áµãµÄÖ¸ÕëÓò£©£¬Ôò( )

A.p->nextÖ¸ÕëÖ¸ÏòÁ´Î²½áµã B.hÖ¸ÏòÁ´Î²½áµã C.ɾ³ýÁ´Î²Ç°ÃæµÄ½áµã D.ɾ³ýÁ´Î²½áµã

5.Éè˳Ðò±íÓÐ19¸öÔªËØ£¬µÚÒ»¸öÔªËØµÄµØÖ·Îª200£¬ÇÒÿ¸öÔªËØÕ¼3¸ö×Ö½Ú£¬ÔòµÚ14¸öÔªËØµÄ´æ´¢µØÖ·Îª( ) A.236 B.239 C.242 D.245

6.Ò»¸öÕ»µÄÈëÕ»ÐòÁÐÊÇa,b,c,d,e£¬ÔòÕ»µÄÊä³öÐòÁв»¿ÉÄÜÊÇ( )A.dceab B.decba C.edcba D.abcde 7.ÔªËØ´óСΪ1¸öµ¥Ôª£¬ÈÝÁ¿Îªn¸öµ¥ÔªµÄ·Ç¿Õ˳ÐòÕ»ÖУ¬ÒÔµØÖ·¸ß¶ËΪջµ×£¬ÒÔtop×÷Ϊջ¶¥Ö¸Õ룬Ôò³öÕ»´¦Àíºó£¬topµÄÖµÓ¦ÐÞ¸ÄΪ( ) A.top=top B.top=n-1 C.top=top-1 D.top=top+1 17.ÉèË«Á´±íÖнáµãµÄǰÇ÷Ö¸ÕëºÍºó¼ÌÖ¸ÕëµÄÓòÃû·Ö±ðΪt1ºÍr1£¬Ö¸ÕësÖ¸ÏòË«Á´±íÖеÄÒ»¸ö½áµã£¨¸Ã½áµã¼È·ÇÍ·½áµã£¬Ò²·Çβ½áµã£©£¬Ôòɾ³ýsÖ¸ÕëËùÖ¸Ïò½áµãµÄ²Ù×÷Ϊ¨Ds->tl->r1=s->r1£»¡¬ºÍ¨D_______¡¬¡£ 32.ÈçÌâ32ͼËùʾ£¬ÔÚÕ»µÄÊäÈë¶ËÓÐ6¸öÔªËØ£¬Ë³ÐòΪA£¬B£¬C£¬D£¬E£¬F¡£ÄÜ·ñÔÚÕ»µÄÊä³ö¶ËµÃµ½ÐòÁÐDCFEBA¼°EDBFCA£¿ÈôÄÜ£¬¸ø³öÕ»²Ù×÷µÄ¹ý³Ì£¬Èô²»ÄÜ£¬¼òÊöÆäÀíÓÉ¡£

35.ij´øÍ·½áµãµÄµ¥Á´±íµÄ½áµã½á¹¹ËµÃ÷ÈçÏ£º typedef struct node1 { int data;

struct node1 *next }node£»

ÊÔÉè¼ÆÒ»¸öËã·¨int copy(node *head1, node *head2)£¬½«ÒÔhead1ΪͷָÕëµÄµ¥Á´±í¸´ÖƵ½Ò»¸ö²»´øÍ·½áµãÇÒÒÔhead2ΪͷָÕëµÄµ¥Á´±íÖС£

3.Éè˳Ðò±íÓÐ9¸öÔªËØ£¬ÔòÔÚµÚ3¸öÔªËØÇ°²åÈëÒ»¸öÔªËØËùÐèÒÆ¶¯ÔªËصĸöÊýΪ( ) A.5 B.6 C.7 D.9

4.ÉèpΪָÏòË«ÏòÑ­»·Á´±íÖÐij¸ö½áµãµÄÖ¸Õ룬pËùÖ¸ÏòµÄ½áµãµÄÁ½¸öÁ´Óò·Ö±ðÓÃp¡úllinkºÍp¡úrlink±íʾ£¬ÔòͬÑù±íʾpÖ¸ÕëËùÖ¸Ïò½áµãµÄ±í´ïʽÊÇ( )

A.p¡úllink B.p¡úrlink C.p¡úllink¡úllink D.p¡úllink¡úrlink

5.Ò»¸öÏòÁ¿µÚÒ»¸öÔªËØµÄ´æ´¢µØÖ·ÊÇ100£¬Ã¿¸öÔªËØµÄ³¤¶ÈΪ2£¬ÔòµÚ5¸öÔªËØµÄ´æ´¢µØÖ·ÊÇ( ) A. 110 B. 108 C. 100 D. 120

6.ÉèÓÐÒ»¸öÕ»£¬°´A¡¢B¡¢C¡¢DµÄ˳Ðò½øÕ»£¬Ôò¿ÉÄÜΪ³öÕ»ÐòÁеÄÊÇ( ) A.DCBA B.CDAB C.DBAC D.DCAB

6

7.ÔÚÒ»¸ö¾ßÓÐn¸öµ¥ÔªµÄ˳ÐòÕ»ÖУ¬¼Ù¶¨ÒÔµØÖ·µÍ¶Ë£¨¼´0µ¥Ôª£©×÷Ϊջµ×£¬ÒÔtopΪջ¶¥Ö¸Õ룬Ôòµ±×ö³öÕ»´¦Àíʱ£¬top±ä»¯Îª( )

A.top++ B.top-- C.top²»±ä D.top=0

17.ÉèÓÐÖ¸ÕëheadÖ¸Ïò²»´ø±íÍ·½áµãµÄµ¥Á´±í£¬ÓÃnext±íʾ½áµãµÄÒ»¸öÁ´Óò£¬Ö¸ÕëpÖ¸ÏòÓëÁ´±íÖнáµãͬÀàÐ͵ÄÒ»¸öнáµã¡£ÏÖÒª½«Ö¸ÕëpÖ¸ÏòµÄ½áµã²åÈë±íÖУ¬Ê¹Ö®³ÉΪµÚÒ»¸ö½áµã£¬ÔòËùÐèµÄ²Ù×÷Ϊ¨Dp¡únext=head£»¡¬ºÍ¨D________¡¬¡£

18.µ¥Á´±íÖÐÂß¼­ÉÏÏàÁÚµÄÁ½¸öÔªËØÔÚÎïÀíλÖÃÉÏ______ÏàÁÚ¡£

19.ÔÚÒ»¸ö³¤¶ÈΪnµÄÊý×éÖÐɾ³ýµÚi¸öÔªËØ£¨1¡Üi¡Ün£©Ê±£¬ÐèÒªÏòÇ°ÒÆ¶¯µÄÔªËØµÄ¸öÊýÊÇ________¡£ 31.ÈçÌâ31ͼËùʾ£¬ÊäÈëÔªËØÎªA£¬B£¬C£¬ÔÚÕ»µÄÊä³ö¶ËµÃµ½Ò»¸öÊä³öÐòÁÐABC£¬ÊÔд³öÔÚÕ»µÄÊäÈë¶ËÈý¸ö¿ÉÄܵÄÊäÈëÐòÁС£

34.ÏÂÃæ³ÌÐò¶ÎΪɾ³ýÑ­»·Á´±íÖеÚÒ»¸öinfoÓòÖµµÈÓÚxµÄ½áµã£¬ÇëÌîÉϳÌÐòÖÐȱÉٵIJ¿·Ö¡£Ñ­»·Á´±íµÄ½á¹¹ÈçÌâ34ͼËùʾ£º

struct node{ int info; struct node *link; }

int Delete (struct node *head, int x)

{ struct node *p, *q; /*p:µ±Ç°´¦ÀíµÄ½áµã£»q£ºpµÄǰÇý½áµã*/

if (! head ) return (0); if (head¡úlink ==head) { if (head¡úinfo==x)

{ free (head); head=NULL£» return (x) } return (0); }

p=head; q=head;

while (q¡úlink!=head) q=(1) ; while (p¡úlink!=head)

7

{ if (p¡úinfo==x)

{ (2) ;

if (p==head) head=(3) ; free (p);return (x); }

else { q=p ;£¨4£© ;} } return (0);

}

1£®¹ØÓÚÕ»ºÍ¶ÓÁеÄ˵·¨ÖÐÕýÈ·µÄÊÇ£¨ £©

A£®Õ»ºÍ¶ÓÁж¼ÊÇÏßÐԽṹ B.Õ»ÊÇÏßÐԽṹ£¬¶ÓÁв»ÊÇÏßÐԽṹ C.Õ»²»ÊÇÏßÐԽṹ£¬¶ÓÁÐÊÇÏßÐԽṹ D.Õ»ºÍ¶ÓÁж¼²»ÊÇÏßÐԽṹ 2£®¹ØÓÚ´æ´¢ÏàͬÊý¾ÝÔªËØµÄ˵·¨ÖÐÕýÈ·µÄÊÇ£¨ £©

A˳Ðò´æ´¢±ÈÁ´Ê½´æ´¢ÉÙÕ¼¿Õ¼ä B.˳Ðò´æ´¢±ÈÁ´Ê½´æ´¢¶àÕ¼¿Õ¼ä

C.˳Ðò´æ´¢ºÍÁ´Ê½´æ´¢¶¼ÒªÇóÕ¼ÓÃÕû¿é´æ´¢¿Õ¼ä D.Á´Ê½´æ´¢±È˳Ðò´æ´¢ÄÑÓÚÀ©³ä¿Õ¼ä 3£®´ÓÂß¼­¹ØÏµÀ´¿´£¬Êý¾ÝÔªËØµÄÖ±½ÓǰÇýΪ0¸ö»ò1¸öµÄÊý¾Ý½á¹¹Ö»ÄÜÊÇ£¨ £© A£®ÏßÐԽṹ B.Ê÷Ðνṹ C.ÏßÐԽṹºÍÊ÷Ðͽṹ D.ÏßÐԽṹºÍͼ״½á¹¹

4£®ÒÑÖªÒ»¸öµ¥Á´±íÖУ¬Ö¸ÕëqÖ¸ÏòÖ¸ÕëpµÄǰÇ÷½áµã£¬ÈôÔÚÖ¸ÕëqËùÖ¸½áµãºÍÖ¸ÕëpËùÖ¸½áµãÖ®¼ä²åÈëÖ¸ÕësËùÖ¸½áµã£¬ÔòÐèÖ´ÐУ¨ £© A£®q¡únext=s£»p¡únext=s£» B.q¡únext=s£»s¡únext=p£» C.q¡únext=s£»q¡únext=p£» D.q¡únext=s£»s¡únext=q£» 5£®ÔÚ³¤¶ÈΪnµÄÏßÐÔ±íÖÐɾ³ýÒ»¸öÖ¸ÕëpËùÖ¸½áµãµÄʱ¼ä¸´ÔÓ¶ÈÊÇ£¨ £© A£®O(n) B.O(1) C.O(log2n) D.O(n2) 6£®ÉèÒ»¸öÕ»µÄÊäÈëÐòÁÐÊÇa,b,c,d£¬ÔòËùµÃµ½µÄÊä³öÐòÁУ¨ÊäÈë¹ý³ÌÖÐÔÊÐí³öÕ»£©²»¿ÉÄܳöÏÖµÄÊÇ£¨ £© A£®a£¬b£¬c£¬d B.a£¬b£¬d£¬c C.d£¬c£¬b£¬a D.c£¬d£¬a£¬b 7£®¹ØÓÚ´®µÄÐðÊöÖУ¬ÕýÈ·µÄÊÇ£¨ £©

A£®¿Õ´®ÊÇÖ»º¬ÓÐÁã¸ö×Ö·ûµÄ´® B.¿Õ´®ÊÇÖ»º¬Óпոñ×Ö·ûµÄ´®

C.¿Õ´®ÊǺ¬ÓÐÁã¸ö×Ö·û»òº¬Óпոñ×Ö·ûµÄ´® D.´®ÊǺ¬ÓÐÒ»¸ö»ò¶à¸ö×Ö·ûµÄÓÐÇîÐòÁÐ

8£®ÔÚ¾ßÓÐm¸öµ¥ÔªµÄÑ­»·¶ÓÁÐÖУ¬¶ÓÍ·Ö¸ÕëΪfront£¬¶ÓβָÕëΪrear£¬Ôò¶ÓÂúµÄÌõ¼þÊÇ£¨ £© A£®front==rear B.(front+1)%m==rear C.rear+1==front D.(rear+1)%m==front

9£®ÉèÓжþάÊý×éA£Ûn£Ý£Ûn£Ý±íʾÈçÏ£º £¬ ÔòA£Ûi£Ý£Ûi£Ý£¨0¡Üi¡Ün-1£©µÄֵΪ£¨ £©

A£®i*(i-1)/2 B.i*(i+1)/2 C.(i+2)*(i+1)/2 D.i2/2 18£®ÔÚ˳Ðò±íÉ϶Á±íÔªËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪ_______¡£

19£®Ë«Á´±íÖÐǰÇýÖ¸ÕëΪprior£¬ºó¼ÌÖ¸ÕëΪnext£¬ÔÚÖ¸ÕëPËùÖ¸½áµãǰ²åÈëÖ¸ÕëSËùÖ¸µÄ½áµã£¬ÐèÖ´ÐÐÏÂÁÐÓï¾ä£ºS¡únext=P;S¡úprior=P¡úprior;P¡úprior=S;_______; 20£®ÉèÊý×éA£Û0..8£Ý£Û0..8£ÝµÄÆðÊ¼ÔªËØÎ»ÖÃΪa£¬Ã¿¸öÔªËØÕ¼2 L¸ö´æ´¢µ¥Ôª£¬°´ÐÐÐòΪÖ÷Ðò´æ´¢¡£ÈôÔªËØA£Ûi£Ý£Ûj£ÝµÄ´æ´¢Î»ÖÃΪa+66 L£¬ÔòÔªËØA£Ûj£Ý£Ûi£ÝµÄ´æ´¢Î»ÖÃΪ_______¡£

29£®ÓÐÒ»×Ö·û´®ÐòÁÐΪ5*-x-y/x+2£¬ÀûÓÃÕ»µÄÔËË㽫ÆäÊä³ö½á¹û±äΪ5x-*yx+/-2£¬ÊÔд³ö¸Ã²Ù×÷µÄÈë

8