2017年江苏省高考数学试卷(含答案解析) 下载本文

[选修4-5:不等式选讲]

24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

【必做题】

25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=∠BAD=120°.

(1)求异面直线A1B与AC1所成角的余弦值; (2)求二面角B﹣A1D﹣A的正弦值.

26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,

第9页(共34页)

m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n). 1

2

3

m+n

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<

2017年江苏省高考数学试卷

参考答案与试题解析

一.填空题

1.(5分)(2017?江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 1 .

【分析】利用交集定义直接求解.

【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1}, ∴a=1或a2+3=1, 解得a=1. 故答案为:1.

【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.

2.(5分)(2017?江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .

【分析】利用复数的运算法则、模的计算公式即可得出. 【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i, ∴|z|=故答案为:

=

【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

第10页(共34页)

3.(5分)(2017?江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 18 件. 【分析】由题意先求出抽样比例即为品中抽取的数目.

【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为

=

=18件,

,再由此比例计算出应从丙种型号的产

则应从丙种型号的产品中抽取300×故答案为:18

【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.

4.(5分)(2017?江苏)如图是一个算法流程图:若输入x的值为的值是 ﹣2 .

,则输出y

【分析】直接模拟程序即得结论. 【解答】解:初始值x=所以y=2+log2

,不满足x≥1, =﹣2,

第11页(共34页)

=2﹣

故答案为:﹣2.

【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.

5.(5分)(2017?江苏)若tan(α﹣

)=.则tanα=

【分析】直接根据两角差的正切公式计算即可

【解答】解:∵tan(α﹣)===

∴6tanα﹣6=tanα+1, 解得tanα=, 故答案为:.

【点评】本题考查了两角差的正切公式,属于基础题

6.(5分)(2017?江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则

的值是

【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果. 【解答】解:设球的半径为R,则球的体积为:圆柱的体积为:πR2?2R=2πR3. 则

=

=.

R3,

第12页(共34页)