2017年江苏省高考数学试卷(含答案解析) 下载本文

18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10

cm,容器Ⅱ的两底面对角

线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

第5页(共34页)

19.(16分)对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k

﹣1

+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a;

(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.

第6页(共34页)

二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)

21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足. 求证:(1)∠PAC=∠CAB; (2)AC2 =AP?AB.

[选修4-2:矩阵与变换] 22.已知矩阵A=(1)求AB; (2)若曲线C1:的方程.

第7页(共34页)

,B=.

=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2

[选修4-4:坐标系与参数方程]

23.在平面直角坐标系xOy中,已知直线l的参数方程为

(t为参数),

曲线C的参数方程为直线l的距离的最小值.

(s为参数).设P为曲线C上的动点,求点P到

第8页(共34页)