X=100:200;
X(mod(X,3)~=0&mod(X,7)~=0)
9¡¢ Ò»ÕÅÖ½ºñ0.06mmÇÒ×ã¹»´ó£¬ÊÔÎʽ«Ö½¶ÔÕÛ¶àÉٴΣ¬Æäºñ¶È½«³¬¹ý10000m£¿
°´ÌâÒ⣬¾ÍÊÇÒªÇó2^n * 0.06E-3 >= 10000£¬ËùÒÔ n = ceil(log(10000/0.06e-3)/log(2))
10¡¢ ±àдMATLAB½Å±¾Êä³ö¡°Ë®ÏÉ»¨Êý¡±¼°Ë®ÏÉ»¨ÊýµÄ¸öÊý¡£Ëùν¡°Ë®ÏÉ»¨Êý¡±ÊÇÒ»¸ö3
λÊý£¬Æä¸÷λÊý×ÖµÄÁ¢·½ºÍµÈÓÚ¸ÃÊý±¾Éí¡£ÀýÈç153?1?5?3¡£ c=0;
for n=100:999
m=[fix(n/100) fix(mod(n,100)/10) mod(n,10)]; if n==sum(m.^3),
fprintf('%i = %i^3 + %i^3 + %i^3\\n',n,m)£» c=c+1; end end
fprintf('\\n¹²%i¸öË®ÏÉ»¨Êý\\n',c)
Êä³ö½á¹û£º
153 = 1^3 + 5^3 + 3^3 370 = 3^3 + 7^3 + 0^3 371 = 3^3 + 7^3 + 1^3 407 = 4^3 + 0^3 + 7^3
¹²4¸öË®ÏÉ»¨Êý
333»æÍ¼
1¡¢ MATLABÖУ¬»æÖÆÈýάÇúÃæÍ¼µÄº¯ÊýÊÇ£¨ £©
£¨A£©surf £¨B£©plot £¨C£©subplot £¨D£©plot3 2¡¢ MATLABÖУ¬Òª»æÖÆÈýά¿Õ¼äÇúÏߣ¬Ó¦¸ÃʹÓ㨠£©º¯Êý¡£
£¨A£©polar £¨B£©plot £¨C£©subplot £¨D£©plot3
3¡¢ ÔÚMATLABÖУ¬AÊÇÒ»¸ö1000ÐÐ2ÁеĶþάÊýÖµÊý×飬ÏÖÔÚÒª°ÑAµÄµÚÒ»ÁÐÊý¾Ý×÷
Ϊºá×ø±ê£¬°ÑAµÄµÚ¶þÁÐÊý¾Ý×÷Ϊ×Ý×ø±ê£¬»³öÒ»ÌõÇúÏߣ¬ÊÔд³öÏàÓ¦µÄMATLABÓï¾ä_____plot(A(:,1),A(:,2))______¡£
4¡¢ MATLAB»æÍ¼Ö¸ÁîÖеÄ__subplot_Ö¸ÁîÔÊÐíÓû§ÔÚͬһ¸öͼÐδ°Àï²¼Öü¸¸ö¶ÀÁ¢µÄ×Ó
ͼ¡£ 5¡¢ ±àдһ¶Îmatlab³ÌÐò£¬»æÖƳö¶þÔªº¯Êýz?2sinxsinyÈýÎ¬ÍøÏßͼ£¬ÒªÇóÈçÏ£º
xy£¨1£©x£¬yµÄȡֵ·¶Î§Îª?9?x?9£¬?9?y?9£» £¨2£©x£¬yÿ¸ô0.5ȡһ¸öµã£»
£¨3£©Í¼ÐεÄÏßÐͺÍÑÕÉ«ÓÉMATLAB×Ô¶¯É趨
[x,y]=meshgrid((-9:0.5:9)+eps); % ¼Óeps±ÜÃâ³öÏÖ0/0 z=2*sin(x).*sin(y)./(x.*y); mesh(x,y,z)
6¡¢ ±àдһ¶Îmatlab³ÌÐò£¬»æÖƳöº¯Êýy1?xsin(),y2?sin(2x)ͼÐεÄMATLABÓï¾ä£¬
ÒªÇóÈçÏ£º
£¨1£©xµÄȡֵ·¶Î§Îª?3?x?3£» £¨2£©xÿ¸ô0.01ȡһ¸öµã£»
£¨3£©y1ºÍy2µÄͼÐÎÒª»ÔÚͬһ·ùͼÀ
£¨4£©Í¼ÐεÄÏßÐͺÍÑÕÉ«ÓÉMATLAB×Ô¶¯É趨¡£ x=(-3:0.01:3)+eps; % ¼Óeps±ÜÃâ³öÏÖ³ý0¾¯¸æ y1=x.*sin(1./x); y2=sin(2*x); plot(x,y1,x,y2)
1x·ûºÅ¼ÆËã
1¡¢ ÔÚMATLABÖУ¬ÄÜÕýÈ·µÄ°Ñx¡¢y¶¨Òå³É·ûºÅ±äÁ¿µÄÖ¸ÁîÊÇ£¨ £©
£¨A£©sym x y £¨B£©sym x , y £¨C£©syms x , y £¨D£©syms x y
2¡¢ ÒªÇå³ýMATLAB¹¤×÷¿Õ¼äÖб£´æµÄ±äÁ¿£¬Ó¦¸ÃʹÓÃ_clear_Ö¸Áî¡£ 3¡¢ ÔÚMATLABÖУ¬Ö¸Áîfindsym(sym('sin(w*t)'),1)µÄÖ´Ðнá¹ûÊÇ__w__¡£ 4¡¢ ÔÚMATLABÖУ¬Ð´³ö°ÑxºÍy¶¨ÒåΪ·ûºÅ±äÁ¿µÄÏàÓ¦Óï¾ä__syms x y_¡£ 5¡¢ Çó½âÏÂÁз½³Ì×éµÄ·ûºÅ½â£º
?x1?x2?3x3?x4?2?x?x?x?1?234??x1?x2?2x3?2x4?4??x1?x2?x3?x4?0?3x?4y?7z?12w?4?5x?7y?4z?2w??3? ?x?8z?5w?9????6x?5y?2z?10w??8A=[1 1 3 -1;0 1 -1 1;1 1 2 2;1 -1 1 -1];
b=[2;1;4;0]; x=sym(A)\\b
A=[3 4 -7 -12;5 -7 4 2;1 0 8 -5;-6 5 -2 10]; b=[4;-3;9;-8]; xyzw=sym(A)\\b
6¡¢ Çó¼«ÏÞ£º
£¨1£© Çóº¯Êýy??1?x?ÔÚx?0´¦µÄ¼«ÏÞ£»
>> syms x
>> limit((1+x)^(1/x),0) ans = exp(1)
1x£¨2£© Çóº¯Êýy?sin3xÔÚx?0´¦µÄ¼«ÏÞ£» tg5x>> syms x
>> limit(sin(3*x)/tan(5*x),0) ans = 3/5
£¨3£© Çóº¯Êýy?nxÔÚÇ÷ÏòÕýÎÞÇî´¦µÄ¼«ÏÞ£» 3x>> syms x n
>> limit(n*x/3^x,inf) ans = 0
ln2x£¨4£© Çóº¯Êýy?3ÔÚÇ÷ÏòÕýÎÞÇî´¦µÄ¼«ÏÞ£»
x>> syms x
>> limit(log(x)^2/x^3,inf) ans = 0
7¡¢ Çóµ¼Êý£º
£¨1£© Çóº¯Êýy?1?3x?3µÄ50½×µ¼Êý£» 2x>> syms x
>> y=1/x^2-3*x+3; >> diff(y,50) ans =
1551118753287382280224243016469303211063259720016986112000000000000/x^52
£¨2£© Çóº¯Êýy?asinbe?t?cta?ÔÚt?b´¦µÄ3½×µ¼Êý£»
syms t a b c
y=a*sin(b*exp(c^t)+t^a); simple(subs(diff(y,t,3),t,b))
8¡¢ Çó²»¶¨»ý·Ö£º
1?sin3xdx1?a2?x2dx?x2?3?x2?3x?94dx
>> syms x
>> int(1/sin(x)^3) ans =
-1/2/sin(x)^2*cos(x)+1/2*log(csc(x)-cot(x))
>> syms x a
>> int(1/(a^2-x^2)) ans =
-1/2/a*log(a-x)+1/2/a*log(a+x)
>> syms x
>> int((sqrt(x^2-3)-sqrt(x^2+3))/sqrt(x^4-9)) ans =
(x^4-9)^(1/2)/(x^2-3)^(1/2)/(x^2+3)^(1/2)*asinh(1/3*3^(1/2)*x)-1/(x^2+3)^(1/2)*(x^4-9)^(1/2)/(x^2-3)^(1/2)*log(x+(x^2-3)^(1/2))
9¡¢ Ç󶨻ý·Ö¼°¹ãÒå»ý·Ö
?2?2x?adx2????sinxcosxdx22???x112x22?y2?dydx
>> syms x a
>> int(sqrt(x^2+a),-2,2) ans =
2*(4+a)^(1/2)+1/2*a*log(2+(4+a)^(1/2))-1/2*a*log(-2+(4+a)^(1/2))
>> syms x
>> int(sin(x)^2*cos(x)^2,-pi,pi) ans = 1/4*pi
>> syms x y
>> int(int(x^2+y^2,y,1,x^2),1,2) ans = 1006/105
10¡¢ ÇóÏÂÃæµÄ»ý·Ö£¬¸ø³ö50λ¾«¶ÈµÄÊýÖµ£º
???sin112x22x?sin2y?dydx
>> syms x y
>> J=int(int(sin(x)^2+sin(y)^2,y,1,x^2),1,2); >> vpa(J,50) ans =
2.1540459589705316265997501755762001048498664176916
?11¡¢ ¼¶ÊýÇóºÍ£º
n?1?n?1??z?1?n22nn??3n?1??z?1?n?1??n?n??1?n?!zn2?x?1????k?02k?1?x?1?2k?1
?x?0?>> syms z n
>> symsum((z-1)^n/(n^2*2^n),n,1,inf) ans =
(1/2*z-1/2)*hypergeom([1, 1, 1],[2, 2],1/2*z-1/2)
>> syms z n
>> symsum((3*n+1)*(z-1)^n,n,1,inf) ans =
(4*z-4)*(-1/(z-2)+3/4/(z-2)^2*(z-1))
>> syms z n
>> symsum(n*(-1)^(n+1)*z^n,n,1,inf) ans = z/(z+1)^2
>> syms x positive >> syms k
>> simple(symsum(2/(2*k+1)*((x-1)/(x+1))^(2*k+1),k,0,inf)) ans =
log(-(1+((x^2-2*x+1)/(x^2+2*x+1))^(1/2))/(-1+((x^2-2*x+1)/(x^2+2*x+1))^(1/2)))