¸ßÊýϲáµÚ10Õ¸´Ï°ÌâÓë´ð°¸ ÏÂÔØ±¾ÎÄ

µÚÊ®ÕÂ-ÇúÏß»ý·ÖÓëÇúÃæ»ý·ÖÁ·Ï°Ìâ

£¨Ò»£©. µÚÒ»ÀàÇúÏß»ý·ÖµÄÐÔÖÊ£¨°üÀ¨¶Ô

³ÆÐÔµÄÓ¦Óã©

x2y2??1 µÄÖܳ¤Îªa£¬Ôò1.ÉèÍÖÔ²L£º34222(1?4x?3y?3xy)ds? £® ?L

6.¼ÆËã

?Lyds, ÆäÖÐLÊÇÅ×ÎïÏßy?x2Éϵã

O(0,0)ÓëµãB(1,1)Ö®¼äµÄÒ»¶Î»¡.

½â

£¨ËÄ£©. ÀûÓøñÁÖ¹«Ê½¼ÆËãµÚ¶þÀàÇúÏß»ý·Ö£¨Ðè×÷¸¨ÖúÏߣ©×¢Òâ·Ö4²½

9.ÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Ö

2xx?(y?1)edx?2(ye?x)dy£¬ÆäÖÐLΪ

Lx2y2??1 µÄÖܳ¤Îªa£¬ÔòÇú2£®ÉèÍÖÔ²L£º43Ïß»ý·Ö?(3x2?4y2?5xy)ds?

L£¨¶þ£©. ÒÑÖªÆ½ÃæÇúÏß¹¹¼þµÄÖÊÁ¿ÏßÃܶÈ

???(x,y)£¬Çó¹¹¼þµÄÖÊÁ¿£¨Ìáʾ£ºM???(x,y)ds£©

L3.ÉèÇúÏßL£ºx?y?1ÉÏÈÎÒâÒ»µã´¦µÄÖÊÁ¿

22ÃܶÈ?(x,y)?(x?y)2£¬Ôò¸ÃÇúÏß¹¹¼þµÄÖÊÁ¿

x2?(y?1)2?1µÄÉϰ벿·Ö£¬´ÓA(1,1)µ½

B(?1,1).

½â£º

M? £®

4.ÉèÇúÏßLΪԲÖÜx?y?1, ÇúÏßµÄÏßÃܶÈ

22

£¨Î壩. ¸ÅÄÔÚµ¥Á¬Í¨ÇøÓòGÄÚ? Èç¹ûP(x? y)ºÍQ(x? y)¾ßÓÐÒ»½×Á¬ÐøÆ«µ¼Êý?ÇÒÓÐ

?Q?P?? ?x?yΪ??x?y, Ôò¸ÃÇúÏßµÄÖÊÁ¿

M??(x2?y2)ds?£¨ £©.

L22A£®2?; B. 4?; C. 8?; D. 16?.

£¨Èý£©. µÚÒ»ÀàÇúÏß»ý·ÖµÄ¼ÆË㣨ֱ½Ç×ø

±êÇéÐΣ©

5.¼ÆËãÇúÏß»ý·Ö?y(1?x)ds£¬ÆäÖÐLΪ

LO(0,0),A(1,0),B(0,1)ÈýµãËù³ÉµÄ

?ÔÚGÄÚµÄÇúÏß»ý·Ö?LP(x,y)dx?Q(x,y)dyÓë·¾¶ÎÞ¹Ø ?ÔÚG

ÄڵıÕÇúÏß»ý·Ö

Èý½ÇÐεÄÕû¸ö±ß½ç. ½â£º

µÚ 1 Ò³ ¹² 8 Ò³

1

?LP(x,y)dx?Q(x,y)dy?0

?ÔÚGÄÚP(x? y)dx?Q(x? y)dyÊÇijһº¯Êý

u(x? y)µÄȫ΢·Ö

»òP(x? y)dx?Q(x? y)dy=0Ϊȫ΢·Ö·½³Ì

10.Èô¶ÔÓÚxoyÆ½ÃæÉϵÄÈÎÒâ¼òµ¥·â±ÕÇúÏß

³ÌµÄͨ½â£®

½â£º

L£¬×ÜÓÐ?(6xy?ay2)dx?(bx2?4xy)dy?0³É

LÁ¢£¬Ôò£¨ £©£®

A . a?2,b?3B. a?2,b??3£»

C. a??2,b?3D. a??2,b??3£®

22 £»

£»

£¨Áù£©. ¼ÆËãµÚÒ»ÀàÇúÃæ»ý·Ö£¨»ý·ÖÇúÃæÎª×¶Ãæ£¬ÐýתÅ×ÎïÃæ£¬ÉϰëÇòÃæ£»Ìáʾ£ºÏòxoyÃæÍ¶Ó°£©

11.ÈôÇúÏß»ý·Ö?(axy?2y)dx?(bxy?x)dyLÔÚxoyÆ½ÃæÉÏÓë·¾¶Î޹أ¬Ôò£¨ £©£®

22(x?y)zdS£¬ÆäÖÐ ?ΪA . £» 15. ¼ÆËãÇúÃæ»ý·Ö a?2,b?4???B. a??2,b?4£»

ÉϰëÇòÃæz?1?x2?y2£® C. £» a?2,b??4½â£º D. a??2,b??4£®

12.Èô(ay2?2xy)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬Ôò£¨ £©£®

A . a?1,b??1B. a??1,b?1£»

a?1,b?1C.

D. a??1,b??1£® 13.ÑéÖ¤ÇúÏß»ý·Ö

£»

£»

?16.¼ÆËãÇúÃæ»ý·Ö??1?4zdS£¬ÆäÖÐ ?ΪÐýתÇúÃæz?x2?y2£¨0?z?1£©£® ½â£º

17.¼ÆËãÇúÃæ»ý·Ö??(z?x2?y2)dS£¬ÆäÖÐ ???L(ey?x)dx?(xey?2y)dyÔÚÈ«Æ½ÃæÉÏÓë·

(1,2)(0,0)¾¶ÎÞ¹Ø, ²¢¼ÆËã

I??(e?x)dx?(xe?2y)dy.

½â£º

yy14.Éè (4xy?ay2)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬1£©Çóa,bµÄÖµ£»2£©Çó¸Ãȫ΢·Ö·½

µÚ 2 Ò³ ¹² 8 Ò³

2

ÎªÔ²×¶Ãæz?x2?y2

( 0?z?1)£® ½â£º

18.¼ÆËãÇúÃæ»ý·Ö??(y?z)dS£¬ÆäÖÐ ?ÎªÆ½Ãæ

?£® 20.¼ÆËãÇúÃæ»ý·Ö

?zzx(e?siny)dydz?y(e?sinx)dzdx?z(sin??£¬

ÆäÖÐ?ΪԲÖùÃæx2?y2?1ÓëÆ½Ãæ

z?0£¬z?1ËùΧԲÖùÌåµÄÈ«±íÃæÍâ²à£®

½â£º

22.¼ÆËãÇúÃæ»ý·Ö

I???xdydz?ydzdx?zdxdy£¬ÆäÖÐ?ÊÇÇú

?x?y?z?1ÔÚµÚÒ»ØÔÏ޵IJ¿·Ö£®

½â£º

Ãæ z?x2?y2 (0?z?1)µÄϲ࣮

£¨Æß£©. ÀûÓøß˹¹«Ê½¼ÆËãµÚ¶þÀàÇúÃæ»ý½â

·Ö£¨·â±ÕÇúÃæ£©

19.¼ÆËãÇúÃæ»ý·Ö

(x3?xz)dydz?(y3?yz)dzdx?3z(x2 ?y2)dxdy???

£¬

ÆäÖÐ?ÎªÔ²×¶Ãæz?x2?y2ÓëÆ½Ãæ

z?1ËùΧԲ׶ÌåµÄÈ«±íÃæÍâ²à£®

£¨°Ë£©. ÆäËû

£¨1£©ÉèÇúÏßLΪԲÖÜx2?y2?4£¬Ôò

½â£º

µÚ 3 Ò³ ¹² 8 Ò³

3

?L(x2?y2)ds=

£¨2£©ÉèÇúÏßLΪԲÖÜx?y?4£¬È¡ÄæÊ±Õë·½Ïò£¬ÔòÇúÏß»ý·Ö

22C£®?ds?2?R,ÆäÖÐL:x2?y2?R2£»

L?Lxdy?ydx? £®

33D.?Ldx?dyx2?y2?11dx?dy??0dxdy?0,???RLRD£¨3£©ÉèÇúÃæÆ¬?ΪԲÖùÃæx2?y2?1ÉÏ

ÆäÖÐ

L:x2?y2?R2,D:x2?y2?R2£®

£¨7£©É躯Êýf(x)¿Éµ¼£¬f(0)?0, ÇÒ

[1?f2(x)]ydx?f(x)dy?0Ϊȫ΢·Ö·½³Ì£¬Çóf(x)£¬²¢ÇóÇúÏß»ý·Ö

0?z?3²¿·Ö£¬ËüµÄÃæÃܶÈΪ??x?y?2£¬Ôò¸ÃÇúÃæÆ¬µÄÖÊÁ¿M? £® £¨4£©Éè?:x2?y2?z2?4£¬È¡Íâ²à£¬Ôò

?(?/4,1)(1,1)[1?f2(x)]ydx?f(x)dy£®

??ydydz?xdzdx?2zdxdy? .

?2½â£º

£¨5£©ÒÔϼÆËãÖУ¬ÕýÈ·µÄÊÇ£¨ £©£®

A£®¶þÖØ»ý·Ö

22(x?y)dxdy???x2?y2?R

222Rdxdy?R??R?? 2x?y2?R£» B£®ÈýÖØ»ý·Ö

x2?y2?z2?R2

2?4?R32Rdv?R???3x2?y2?z2?R2

???(x2?y2?z2)dv?£»

x2?y2?R2?C£®ÇúÏß»ý·Ö(x2?y2)ds?x2?y2?R2?Rds?R?2?R£»

22

x?y?z?R(Íâ²à)22D£®ÇúÃæ»ý·Ö

(x2?y2?z2)dxdy???22x?y?z2?R222??

R2dxdy?R2??R2

.

£¨6£©ÒÔϼÆËãÖдíÎóµÄÊÇ ( )£®

A.µÚÊ®ÕÂ-ÇúÏß»ý·ÖÓëÇúÃæ»ý·ÖÁ·Ï°Ìâ

´ð°¸

413a£» 2£®12a £» 3. M?2? £»4.1.

dv?R2??R2,ÆäÖÐ?:x2?y2?z2?R23 A £©. £¨

5.¼ÆËãÇúÏß»ý·Ö?y(1?x)ds£¬ÆäÖÐLΪ

L????(x2?y2?z2)dv?R2????£»

B£®

(x?y2?z2)dS?R2???2???O(0,0),A(1,0),B(0,1)ÈýµãËù³ÉµÄ

dS?4?R4,ÆäÖÐ?:x2?y2?z2?R2Èý½ÇÐεÄÕû¸ö±ß½ç.

£»

µÚ 4 Ò³ ¹² 8 Ò³

4

½â£º OA:y?0(0?x?1) £¬

?OAy(1?x)ds?0£¬

?£¬

L1(y2?1)exdx?2(yex?x)dy?0£¬

AB:y?1?x(0?x?1)ds?2dx£¬

1

ËùÒÔ

?L(x?cosy)dx?x(1?siny)dy??£®

×¢£º±¾ÀýÖУ¬ÎÒÃÇͨ¹ýÌí¼ÓÒ»¶Î¼òµ¥µÄ¸¨2ÖúÇúÏߣ¬Ê¹ËüÓëËù¸øÇúÏß¹¹³ÉÒ»·â±ÕÇúÏߣ¬È»2y(1?x)ds?(1?x)2dx??AB?03ºóÀûÓøñÁÖ¹«Ê½°ÑËùÇóÇúÏß»ý·Ö»¯Îª¶þÖØ»ý

£¬ ·ÖÀ´¼ÆËã. ÔÚÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Öʱ£¬

ÕâÊdz£ÓõÄÒ»ÖÖ·½·¨. OB:x?0(0?y?1) £¬ds?dy£¬

1£¬ 10. £¨ A £© £» 11. £¨ B £© £» 12.y(1?x)ds?ydy??OB?02£¨ A £©£®

12ËùÒÔ ?y(1?x)ds??£®

L13.ÑéÖ¤ÇúÏß»ý·Ö23

16.¼ÆËã

?Lyds, ÆäÖÐLÊÇÅ×ÎïÏßy?x2Éϵã

?L(ey?x)dx?(xey?2y)dyÔÚÈ«Æ½ÃæÉÏÓë·

(1,2)(0,0)¾¶ÎÞ¹Ø, ²¢¼ÆËã

O(0,0)ÓëµãB(1,1)Ö®¼äµÄÒ»¶Î»¡.

I??(ey?x)dx?(xey?2y)dy.

½â LµÄ·½³Ìy?x(0?x?1),

ds?1?(x2)?2dx?1?4x2dx.

2Òò´Ë

½â£ºÉè P?ey?x,Q?xey?2y, ÒòΪ

?P?Q??eyÔÚÕû¸öÆ½ÃæÉ϶¼³ÉÁ¢, ËùÒÔÇú?y?xÏß»ý·ÖÔÚÈ«Æ½ÃæÉÏÓë·¾¶ÎÞ¹Ø.

È¡ÕÛÏß·¾¶(0,0)?(1,0)?(1,2)»ý·Ö

?Lyds???101x?1?4xdx 1?4x2dx

122?x0I??(1,2)(0,0)1(ey?x)dx?(xey?2y)dy

201?1???(1?4x2)3/2??(55?1). ?12?012=?(1?x)dx??(ey?2y)dy

0=

9.ÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Ö

2xx(y?1)edx?2(ye?x)dy£¬ÆäÖÐLΪ ?L1y22(x?x2)10?(e?y)0

27=??e2 2x2?(y?1)2?1µÄÉϰ벿·Ö£¬´ÓA(1,1)µ½B(?1,1).

14.Éè (4xy?ay2)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬1£©Çóa,bµÄÖµ£»2£©Çó¸Ãȫ΢·Ö·½

½â£º L1:y?1£¬x´Ó?1µ½1£» ³ÌµÄͨ½â£®

2xx(y?1)edx?2(ye?x)dy???2d???1£©P?4xy?ay2,Q?bx2?2xy £¬ ?L?L1½â£º

D£¬

ÓÖ

ÓÉ

?P?Q??y?x £¬¼´

4x?2ay?2bx?2y£¬¿ÉµÃ a?1,b?2£»

µÚ 5 Ò³ ¹² 8 Ò³

5

2£©

(x,y)(0,0)dS?1?4x2?4y2dxdy£¬

u(x,y)??(4xy?y2)dx?(2x2?2xy)dy ??(4xy?y2)dx£¨»ò

0xDxy:x2?y2?1 £¬

?y0(2x2?2xy)dy£©

?2xy?xy22?? £¬

?1?4zdS

2222ËùÇó΢·Ö·½³ÌµÄͨ½âΪ ? ?? 1?4x?4y?1?4x?4ydxdy

Dxy2x2y?xy2?C£®

15.¼ÆËãÇúÃæ»ý·Ö??(x2?y2)zdS£¬ÆäÖÐ ?Ϊ

?

?22(1?4x?4y)dxdy??ÉϰëÇòÃæz?1?x?y£®

½â

£º

22Dxyzx??x1?x?y11?x?y2222£¬

dxdy£¬

22

zy??y1?x?y22£¬ dS???2?0d??1?4r2rdr01??Dxy:x?y?1 £¬

22??(x?y)zdS?

?3?£® 17.¼ÆËãÇúÃæ»ý·Ö??(z?x2?y2)dS£¬ÆäÖÐ ??ÎªÔ²×¶Ãæz?x2?y2

22?Dxy??(x2?y)1?x?y?211?x2?y2 ( 0?z?1)£®

dxdy

½â£º zx?xx?y22£¬

?

Dxy22(x?y)dxdy ??zy?yx?y22£¬ dS?2dxdy£¬

???2?0d??r3dr01Dxy:x2?y2?1?16.¼ÆËãÇúÃæ»ý·Ö???21?4zdS£¬ÆäÖÐ ?ΪÐý

£¬ £®

תÇúÃæz?x2?y2£¨0?z?1£©£®

½â£º

µÚ 6 Ò³ ¹² 8 Ò³

??(z?x?2?y2)dS

zx?2x£¬

zy?2y£¬

6

?Dxy2222(x?y?x?y)2dxdy ??

222£¬

2?2??(x?y?x?y)dxdyDxy??(x?3?xz)dydz?(y3?yz)dzdx?3z(x2?y2)dx

????2zdv

??2?2?0d??r?r2rdr?01??72?£® 6??102zdz??dxdy??2?z3dz?Dz01?2£®

18.¼ÆËãÇúÃæ»ý·Ö??(y?z)dS£¬ÆäÖÐ ?ÎªÆ½Ãæ

?»ò

??2?0x?y?z?1ÔÚµÚÒ»ØÔÏ޵IJ¿·Ö£®

d??rdr?2zdz?2??0r111??£® 42½â£º zx??1, zy??1, 20. ¼ÆËãÇúÃæ»ý·Ö

?zzx(e?siny)dydz?y(e?sinx)dzdx?z(sinDxy:x?y?1,x?0,y?0 ??

£¬

??(y?z)dS??DxyÆäÖÐ?ΪԲÖùÃæx2?y2?1ÓëÆ½Ãæ (1?x)3dxdy???3?

10(1?x)dx?1?x0z?0£¬z?1ËùΧԲÖùÌåµÄÈ«±íÃæÍâ²à£®

dy½â£ºP?x(ez?siny)£¬Q?y(ez?sinx)£¬

19.¼ÆËãÇúÃæ»ý·Ö

?R?z(sinx?siny)£¬

3? 3?P?Q?R???2ez?x?y?z3322(x?xz)dydz?(y?yz)dzdx?3z(x?y£¬ ) dxdy ??£¬

ÆäÖÐ?ÎªÔ²×¶Ãæz?x2?y2ÓëÆ½Ãæ

z?1ËùΧԲ׶ÌåµÄÈ«±íÃæÍâ²à£®

zzx(e?siny)dydz?y(e?sinx)dzdx?z(sinx???

?????2ezdv

3½â£º P?x?xz£¬Q?y?yz£¬

R??3z(x2?y2)£¬

3

??2ezdz??dxdy??2?ezdz?2?(e?1)£®

0Dz011?P?Q?R???2z?x?y?zµÚ 7 Ò³ ¹² 8 Ò³

7

»ò

??2?0111d??rdr?2ezdz?2???2(e?1)?2?(e?1)002

£®

22.¼ÆËãÇúÃæ»ý·Ö

I???xdydz?ydzdx?zdxdy£¬ÆäÖÐ?ÊÇÇú

?µÃ »ý

·Ö

µÃ

f?(x)?1?f2(x),

arctanf(x)?x?C,

Ãæz?x2?y2 (0?z?1)µÄϲ࣮

½â Áî?1:z?1, È¡Éϲ࣬

I?

ÓÉf(0)?0, µÃ C = 0, Òò´Ë f(x)?tanx;

?????1xdydz?ydzdx?zdxdy????1xdydz?ydzdx?zdxdy

?????3dxdydz? x2???dxdyy2?1

?3?2?0d??10rdr?1

r2dz?? ?6??120r(1?r)dr??

?11?1?6???2r2?4r4???? 0

?12?.

ÆäËû

£¨1£©16?£»£¨2£© 24? £»

£¨3£©12? £»£¨4£©643?.

£¨5£©£¨ C £©£».£¨6£© ( A )£®

£¨7£©É躯Êýf(x)¿Éµ¼£¬f(0)?0, ÇÒ

[1?f2(x)]ydx?f(x)dy?0Ϊȫ΢·Ö·½³Ì£¬Çóf(x)£¬²¢ÇóÇúÏß»ý·Ö

?(?/4,1)(1,1)[1?f2(x)]ydx?f(x)dy£®

½â£º ÓÉ

?([1?f2(x)]y)?y??f(x)?x, µÚ 8 Ò³ ¹² 8 Ò³

8

?(?/4,1) ( 1, 1) [ 1 ? f2 ( x )]

ydx?f(x)dy

??(?/4,1)(1,1)(1?tan2x)ydx?tanxdy

???/421(1?tanx)dx

? tan x |? / 4 ? 1 ?

1tan1.