µÚÊ®ÕÂ-ÇúÏß»ý·ÖÓëÇúÃæ»ý·ÖÁ·Ï°Ìâ
£¨Ò»£©. µÚÒ»ÀàÇúÏß»ý·ÖµÄÐÔÖÊ£¨°üÀ¨¶Ô
³ÆÐÔµÄÓ¦Óã©
x2y2??1 µÄÖܳ¤Îªa£¬Ôò1.ÉèÍÖÔ²L£º34222(1?4x?3y?3xy)ds? £® ?L
6.¼ÆËã
?Lyds, ÆäÖÐLÊÇÅ×ÎïÏßy?x2Éϵã
O(0,0)ÓëµãB(1,1)Ö®¼äµÄÒ»¶Î»¡.
½â
£¨ËÄ£©. ÀûÓøñÁÖ¹«Ê½¼ÆËãµÚ¶þÀàÇúÏß»ý·Ö£¨Ðè×÷¸¨ÖúÏߣ©×¢Òâ·Ö4²½
9.ÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Ö
2xx?(y?1)edx?2(ye?x)dy£¬ÆäÖÐLΪ
Lx2y2??1 µÄÖܳ¤Îªa£¬ÔòÇú2£®ÉèÍÖÔ²L£º43Ïß»ý·Ö?(3x2?4y2?5xy)ds?
L£¨¶þ£©. ÒÑÖªÆ½ÃæÇúÏß¹¹¼þµÄÖÊÁ¿ÏßÃܶÈ
???(x,y)£¬Çó¹¹¼þµÄÖÊÁ¿£¨Ìáʾ£ºM???(x,y)ds£©
L3.ÉèÇúÏßL£ºx?y?1ÉÏÈÎÒâÒ»µã´¦µÄÖÊÁ¿
22ÃܶÈ?(x,y)?(x?y)2£¬Ôò¸ÃÇúÏß¹¹¼þµÄÖÊÁ¿
x2?(y?1)2?1µÄÉϰ벿·Ö£¬´ÓA(1,1)µ½
B(?1,1).
½â£º
M? £®
4.ÉèÇúÏßLΪԲÖÜx?y?1, ÇúÏßµÄÏßÃܶÈ
22
£¨Î壩. ¸ÅÄÔÚµ¥Á¬Í¨ÇøÓòGÄÚ? Èç¹ûP(x? y)ºÍQ(x? y)¾ßÓÐÒ»½×Á¬ÐøÆ«µ¼Êý?ÇÒÓÐ
?Q?P?? ?x?yΪ??x?y, Ôò¸ÃÇúÏßµÄÖÊÁ¿
M??(x2?y2)ds?£¨ £©.
L22A£®2?; B. 4?; C. 8?; D. 16?.
£¨Èý£©. µÚÒ»ÀàÇúÏß»ý·ÖµÄ¼ÆË㣨ֱ½Ç×ø
±êÇéÐΣ©
5.¼ÆËãÇúÏß»ý·Ö?y(1?x)ds£¬ÆäÖÐLΪ
LO(0,0),A(1,0),B(0,1)ÈýµãËù³ÉµÄ
?ÔÚGÄÚµÄÇúÏß»ý·Ö?LP(x,y)dx?Q(x,y)dyÓë·¾¶ÎÞ¹Ø ?ÔÚG
ÄڵıÕÇúÏß»ý·Ö
Èý½ÇÐεÄÕû¸ö±ß½ç. ½â£º
µÚ 1 Ò³ ¹² 8 Ò³
1
?LP(x,y)dx?Q(x,y)dy?0
?ÔÚGÄÚP(x? y)dx?Q(x? y)dyÊÇijһº¯Êý
u(x? y)µÄȫ΢·Ö
»òP(x? y)dx?Q(x? y)dy=0Ϊȫ΢·Ö·½³Ì
10.Èô¶ÔÓÚxoyÆ½ÃæÉϵÄÈÎÒâ¼òµ¥·â±ÕÇúÏß
³ÌµÄͨ½â£®
½â£º
L£¬×ÜÓÐ?(6xy?ay2)dx?(bx2?4xy)dy?0³É
LÁ¢£¬Ôò£¨ £©£®
A . a?2,b?3B. a?2,b??3£»
C. a??2,b?3D. a??2,b??3£®
22 £»
£»
£¨Áù£©. ¼ÆËãµÚÒ»ÀàÇúÃæ»ý·Ö£¨»ý·ÖÇúÃæÎª×¶Ãæ£¬ÐýתÅ×ÎïÃæ£¬ÉϰëÇòÃæ£»Ìáʾ£ºÏòxoyÃæÍ¶Ó°£©
11.ÈôÇúÏß»ý·Ö?(axy?2y)dx?(bxy?x)dyLÔÚxoyÆ½ÃæÉÏÓë·¾¶Î޹أ¬Ôò£¨ £©£®
22(x?y)zdS£¬ÆäÖÐ ?ΪA . £» 15. ¼ÆËãÇúÃæ»ý·Ö a?2,b?4???B. a??2,b?4£»
ÉϰëÇòÃæz?1?x2?y2£® C. £» a?2,b??4½â£º D. a??2,b??4£®
12.Èô(ay2?2xy)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬Ôò£¨ £©£®
A . a?1,b??1B. a??1,b?1£»
a?1,b?1C.
D. a??1,b??1£® 13.ÑéÖ¤ÇúÏß»ý·Ö
£»
£»
?16.¼ÆËãÇúÃæ»ý·Ö??1?4zdS£¬ÆäÖÐ ?ΪÐýתÇúÃæz?x2?y2£¨0?z?1£©£® ½â£º
17.¼ÆËãÇúÃæ»ý·Ö??(z?x2?y2)dS£¬ÆäÖÐ ???L(ey?x)dx?(xey?2y)dyÔÚÈ«Æ½ÃæÉÏÓë·
(1,2)(0,0)¾¶ÎÞ¹Ø, ²¢¼ÆËã
I??(e?x)dx?(xe?2y)dy.
½â£º
yy14.Éè (4xy?ay2)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬1£©Çóa,bµÄÖµ£»2£©Çó¸Ãȫ΢·Ö·½
µÚ 2 Ò³ ¹² 8 Ò³
2
ÎªÔ²×¶Ãæz?x2?y2
( 0?z?1)£® ½â£º
18.¼ÆËãÇúÃæ»ý·Ö??(y?z)dS£¬ÆäÖÐ ?ÎªÆ½Ãæ
?£® 20.¼ÆËãÇúÃæ»ý·Ö
?zzx(e?siny)dydz?y(e?sinx)dzdx?z(sin??£¬
ÆäÖÐ?ΪԲÖùÃæx2?y2?1ÓëÆ½Ãæ
z?0£¬z?1ËùΧԲÖùÌåµÄÈ«±íÃæÍâ²à£®
½â£º
22.¼ÆËãÇúÃæ»ý·Ö
I???xdydz?ydzdx?zdxdy£¬ÆäÖÐ?ÊÇÇú
?x?y?z?1ÔÚµÚÒ»ØÔÏ޵IJ¿·Ö£®
½â£º
Ãæ z?x2?y2 (0?z?1)µÄϲ࣮
£¨Æß£©. ÀûÓøß˹¹«Ê½¼ÆËãµÚ¶þÀàÇúÃæ»ý½â
·Ö£¨·â±ÕÇúÃæ£©
19.¼ÆËãÇúÃæ»ý·Ö
(x3?xz)dydz?(y3?yz)dzdx?3z(x2 ?y2)dxdy???
£¬
ÆäÖÐ?ÎªÔ²×¶Ãæz?x2?y2ÓëÆ½Ãæ
z?1ËùΧԲ׶ÌåµÄÈ«±íÃæÍâ²à£®
£¨°Ë£©. ÆäËû
£¨1£©ÉèÇúÏßLΪԲÖÜx2?y2?4£¬Ôò
½â£º
µÚ 3 Ò³ ¹² 8 Ò³
3
?L(x2?y2)ds=
£¨2£©ÉèÇúÏßLΪԲÖÜx?y?4£¬È¡ÄæÊ±Õë·½Ïò£¬ÔòÇúÏß»ý·Ö
22C£®?ds?2?R,ÆäÖÐL:x2?y2?R2£»
L?Lxdy?ydx? £®
33D.?Ldx?dyx2?y2?11dx?dy??0dxdy?0,???RLRD£¨3£©ÉèÇúÃæÆ¬?ΪԲÖùÃæx2?y2?1ÉÏ
ÆäÖÐ
L:x2?y2?R2,D:x2?y2?R2£®
£¨7£©É躯Êýf(x)¿Éµ¼£¬f(0)?0, ÇÒ
[1?f2(x)]ydx?f(x)dy?0Ϊȫ΢·Ö·½³Ì£¬Çóf(x)£¬²¢ÇóÇúÏß»ý·Ö
0?z?3²¿·Ö£¬ËüµÄÃæÃܶÈΪ??x?y?2£¬Ôò¸ÃÇúÃæÆ¬µÄÖÊÁ¿M? £® £¨4£©Éè?:x2?y2?z2?4£¬È¡Íâ²à£¬Ôò
?(?/4,1)(1,1)[1?f2(x)]ydx?f(x)dy£®
??ydydz?xdzdx?2zdxdy? .
?2½â£º
£¨5£©ÒÔϼÆËãÖУ¬ÕýÈ·µÄÊÇ£¨ £©£®
A£®¶þÖØ»ý·Ö
22(x?y)dxdy???x2?y2?R
222Rdxdy?R??R?? 2x?y2?R£» B£®ÈýÖØ»ý·Ö
x2?y2?z2?R2
2?4?R32Rdv?R???3x2?y2?z2?R2
???(x2?y2?z2)dv?£»
x2?y2?R2?C£®ÇúÏß»ý·Ö(x2?y2)ds?x2?y2?R2?Rds?R?2?R£»
22
x?y?z?R(Íâ²à)22D£®ÇúÃæ»ý·Ö
(x2?y2?z2)dxdy???22x?y?z2?R222??
R2dxdy?R2??R2
.
£¨6£©ÒÔϼÆËãÖдíÎóµÄÊÇ ( )£®
A.µÚÊ®ÕÂ-ÇúÏß»ý·ÖÓëÇúÃæ»ý·ÖÁ·Ï°Ìâ
´ð°¸
413a£» 2£®12a £» 3. M?2? £»4.1.
dv?R2??R2,ÆäÖÐ?:x2?y2?z2?R23 A £©. £¨
5.¼ÆËãÇúÏß»ý·Ö?y(1?x)ds£¬ÆäÖÐLΪ
L????(x2?y2?z2)dv?R2????£»
B£®
(x?y2?z2)dS?R2???2???O(0,0),A(1,0),B(0,1)ÈýµãËù³ÉµÄ
dS?4?R4,ÆäÖÐ?:x2?y2?z2?R2Èý½ÇÐεÄÕû¸ö±ß½ç.
£»
µÚ 4 Ò³ ¹² 8 Ò³
4
½â£º OA:y?0(0?x?1) £¬
?OAy(1?x)ds?0£¬
?£¬
L1(y2?1)exdx?2(yex?x)dy?0£¬
AB:y?1?x(0?x?1)ds?2dx£¬
1
ËùÒÔ
?L(x?cosy)dx?x(1?siny)dy??£®
×¢£º±¾ÀýÖУ¬ÎÒÃÇͨ¹ýÌí¼ÓÒ»¶Î¼òµ¥µÄ¸¨2ÖúÇúÏߣ¬Ê¹ËüÓëËù¸øÇúÏß¹¹³ÉÒ»·â±ÕÇúÏߣ¬È»2y(1?x)ds?(1?x)2dx??AB?03ºóÀûÓøñÁÖ¹«Ê½°ÑËùÇóÇúÏß»ý·Ö»¯Îª¶þÖØ»ý
£¬ ·ÖÀ´¼ÆËã. ÔÚÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Öʱ£¬
ÕâÊdz£ÓõÄÒ»ÖÖ·½·¨. OB:x?0(0?y?1) £¬ds?dy£¬
1£¬ 10. £¨ A £© £» 11. £¨ B £© £» 12.y(1?x)ds?ydy??OB?02£¨ A £©£®
12ËùÒÔ ?y(1?x)ds??£®
L13.ÑéÖ¤ÇúÏß»ý·Ö23
16.¼ÆËã
?Lyds, ÆäÖÐLÊÇÅ×ÎïÏßy?x2Éϵã
?L(ey?x)dx?(xey?2y)dyÔÚÈ«Æ½ÃæÉÏÓë·
(1,2)(0,0)¾¶ÎÞ¹Ø, ²¢¼ÆËã
O(0,0)ÓëµãB(1,1)Ö®¼äµÄÒ»¶Î»¡.
I??(ey?x)dx?(xey?2y)dy.
½â LµÄ·½³Ìy?x(0?x?1),
ds?1?(x2)?2dx?1?4x2dx.
2Òò´Ë
½â£ºÉè P?ey?x,Q?xey?2y, ÒòΪ
?P?Q??eyÔÚÕû¸öÆ½ÃæÉ϶¼³ÉÁ¢, ËùÒÔÇú?y?xÏß»ý·ÖÔÚÈ«Æ½ÃæÉÏÓë·¾¶ÎÞ¹Ø.
È¡ÕÛÏß·¾¶(0,0)?(1,0)?(1,2)»ý·Ö
?Lyds???101x?1?4xdx 1?4x2dx
122?x0I??(1,2)(0,0)1(ey?x)dx?(xey?2y)dy
201?1???(1?4x2)3/2??(55?1). ?12?012=?(1?x)dx??(ey?2y)dy
0=
9.ÀûÓøñÁÖ¹«Ê½¼ÆËãÇúÏß»ý·Ö
2xx(y?1)edx?2(ye?x)dy£¬ÆäÖÐLΪ ?L1y22(x?x2)10?(e?y)0
27=??e2 2x2?(y?1)2?1µÄÉϰ벿·Ö£¬´ÓA(1,1)µ½B(?1,1).
14.Éè (4xy?ay2)dx?(bx2?2xy)dy?0Ϊȫ΢·Ö·½³Ì£¬1£©Çóa,bµÄÖµ£»2£©Çó¸Ãȫ΢·Ö·½
½â£º L1:y?1£¬x´Ó?1µ½1£» ³ÌµÄͨ½â£®
2xx(y?1)edx?2(ye?x)dy???2d???1£©P?4xy?ay2,Q?bx2?2xy £¬ ?L?L1½â£º
D£¬
ÓÖ
ÓÉ
?P?Q??y?x £¬¼´
4x?2ay?2bx?2y£¬¿ÉµÃ a?1,b?2£»
µÚ 5 Ò³ ¹² 8 Ò³
5
2£©
(x,y)(0,0)dS?1?4x2?4y2dxdy£¬
u(x,y)??(4xy?y2)dx?(2x2?2xy)dy ??(4xy?y2)dx£¨»ò
0xDxy:x2?y2?1 £¬
?y0(2x2?2xy)dy£©
?2xy?xy22?? £¬
?1?4zdS
2222ËùÇó΢·Ö·½³ÌµÄͨ½âΪ ? ?? 1?4x?4y?1?4x?4ydxdy
Dxy2x2y?xy2?C£®
15.¼ÆËãÇúÃæ»ý·Ö??(x2?y2)zdS£¬ÆäÖÐ ?Ϊ
?
?22(1?4x?4y)dxdy??ÉϰëÇòÃæz?1?x?y£®
½â
£º
22Dxyzx??x1?x?y11?x?y2222£¬
dxdy£¬
22
zy??y1?x?y22£¬ dS???2?0d??1?4r2rdr01??Dxy:x?y?1 £¬
22??(x?y)zdS?
?3?£® 17.¼ÆËãÇúÃæ»ý·Ö??(z?x2?y2)dS£¬ÆäÖÐ ??ÎªÔ²×¶Ãæz?x2?y2
22?Dxy??(x2?y)1?x?y?211?x2?y2 ( 0?z?1)£®
dxdy
½â£º zx?xx?y22£¬
?
Dxy22(x?y)dxdy ??zy?yx?y22£¬ dS?2dxdy£¬
???2?0d??r3dr01Dxy:x2?y2?1?16.¼ÆËãÇúÃæ»ý·Ö???21?4zdS£¬ÆäÖÐ ?ΪÐý
£¬ £®
תÇúÃæz?x2?y2£¨0?z?1£©£®
½â£º
µÚ 6 Ò³ ¹² 8 Ò³
??(z?x?2?y2)dS
zx?2x£¬
zy?2y£¬
6
?Dxy2222(x?y?x?y)2dxdy ??
222£¬
2?2??(x?y?x?y)dxdyDxy??(x?3?xz)dydz?(y3?yz)dzdx?3z(x2?y2)dx
????2zdv
??2?2?0d??r?r2rdr?01??72?£® 6??102zdz??dxdy??2?z3dz?Dz01?2£®
18.¼ÆËãÇúÃæ»ý·Ö??(y?z)dS£¬ÆäÖÐ ?ÎªÆ½Ãæ
?»ò
??2?0x?y?z?1ÔÚµÚÒ»ØÔÏ޵IJ¿·Ö£®
d??rdr?2zdz?2??0r111??£® 42½â£º zx??1, zy??1, 20. ¼ÆËãÇúÃæ»ý·Ö
?zzx(e?siny)dydz?y(e?sinx)dzdx?z(sinDxy:x?y?1,x?0,y?0 ??
£¬
??(y?z)dS??DxyÆäÖÐ?ΪԲÖùÃæx2?y2?1ÓëÆ½Ãæ (1?x)3dxdy???3?
10(1?x)dx?1?x0z?0£¬z?1ËùΧԲÖùÌåµÄÈ«±íÃæÍâ²à£®
dy½â£ºP?x(ez?siny)£¬Q?y(ez?sinx)£¬
19.¼ÆËãÇúÃæ»ý·Ö
?R?z(sinx?siny)£¬
3? 3?P?Q?R???2ez?x?y?z3322(x?xz)dydz?(y?yz)dzdx?3z(x?y£¬ ) dxdy ??£¬
ÆäÖÐ?ÎªÔ²×¶Ãæz?x2?y2ÓëÆ½Ãæ
z?1ËùΧԲ׶ÌåµÄÈ«±íÃæÍâ²à£®
zzx(e?siny)dydz?y(e?sinx)dzdx?z(sinx???
?????2ezdv
3½â£º P?x?xz£¬Q?y?yz£¬
R??3z(x2?y2)£¬
3
??2ezdz??dxdy??2?ezdz?2?(e?1)£®
0Dz011?P?Q?R???2z?x?y?zµÚ 7 Ò³ ¹² 8 Ò³
7
»ò
??2?0111d??rdr?2ezdz?2???2(e?1)?2?(e?1)002
£®
22.¼ÆËãÇúÃæ»ý·Ö
I???xdydz?ydzdx?zdxdy£¬ÆäÖÐ?ÊÇÇú
?µÃ »ý
·Ö
µÃ
f?(x)?1?f2(x),
arctanf(x)?x?C,
Ãæz?x2?y2 (0?z?1)µÄϲ࣮
½â Áî?1:z?1, È¡Éϲ࣬
I?
ÓÉf(0)?0, µÃ C = 0, Òò´Ë f(x)?tanx;
?????1xdydz?ydzdx?zdxdy????1xdydz?ydzdx?zdxdy
?????3dxdydz? x2???dxdyy2?1
?3?2?0d??10rdr?1
r2dz?? ?6??120r(1?r)dr??
?11?1?6???2r2?4r4???? 0
?12?.
ÆäËû
£¨1£©16?£»£¨2£© 24? £»
£¨3£©12? £»£¨4£©643?.
£¨5£©£¨ C £©£».£¨6£© ( A )£®
£¨7£©É躯Êýf(x)¿Éµ¼£¬f(0)?0, ÇÒ
[1?f2(x)]ydx?f(x)dy?0Ϊȫ΢·Ö·½³Ì£¬Çóf(x)£¬²¢ÇóÇúÏß»ý·Ö
?(?/4,1)(1,1)[1?f2(x)]ydx?f(x)dy£®
½â£º ÓÉ
?([1?f2(x)]y)?y??f(x)?x, µÚ 8 Ò³ ¹² 8 Ò³
8
?(?/4,1) ( 1, 1) [ 1 ? f2 ( x )]
ydx?f(x)dy
??(?/4,1)(1,1)(1?tan2x)ydx?tanxdy
???/421(1?tanx)dx
? tan x |? / 4 ? 1 ?
1tan1.