½«x1+x2=2x0,x1x2=-4´úÈë,µÃ????????????? ¡¤????????????? =0. ËùÒÔÒÔABΪֱ¾¶µÄÔ²ºã¹ýµãM.
5.(2019ɽ¶«Î«·»ÈýÄ£)Èçͼ,ÍÖÔ²??2
C:2??2¡Ì3+2=1(a>b>0)µÄÀëÐÄÂÊΪ,Éè
A,B·Ö±ðΪÍÖÔ²CµÄÓÒ¶¥
????2µã,϶¥µã,¡÷OABµÄÃæ»ýΪ1.
(1)ÇóÍÖÔ²CµÄ·½³Ì;
(2)ÒÑÖª²»¾¹ýµãAµÄÖ±Ïßl:y=kx+m(k¡Ù0,m¡ÊR)½»ÍÖÔ²ÓÚP,QÁ½µã,Ïß¶ÎPQµÄÖеãΪM,Èô
|PQ|=2|AM|,ÇóÖ¤:Ö±Ïßl¹ý¶¨µã.
(1)½âÓÉÒÑÖª,
??=¡Ì3??2??2,??2
??2=1-??2,¿ÉµÃa2=4b2,
ÓÖÒòΪS1
¡÷AOB=1,¼´2ab=1,ËùÒÔ(22
2
??)=4b, ¼´b2
=1,a2
=4,
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
??24
+y2=1.
(2)Ö¤Ã÷ÓÉÌâÒâÖªA(2,0),ÒòΪ|PQ|=2|AM|,
ËùÒÔAM=PM=QM,ËùÒÔÏß¶ÎPQΪ¡÷APQÍâ½ÓÔ²µÄÖ±¾¶,¼´????????????? ¡¤????????????? =0,
??=????+??,
ÁªÁ¢{??2
4
+??2=1,
µÃ(4k2
+1)x2
+8kmx+4m2
-4=0,
¦¤=16¡Á(1+4k2-m2)>0,ÉèP(x1,y1),Q(x2,y2),Ôòx-8????4??2-4
1+x2=4??2+1,x1¡¤x2=4??2+1,
¢Ù
57
ÓÖÒòΪ????????????? ¡¤????????????? =0,
¼´x1¡¤x2-2(x1+x2)+y1¡¤y2+4=0, ÓÖy1=kx1+m,y2=kx2+m,
y1y2=k2x1x2+m2+km(x1+x2),
¼´(k+1)x1¡¤x2+(km-2)(x1+x2)+m+4=0,¢Ú °Ñ¢Ù´úÈë¢Ú,µÃ
4km-4k+4m-4-8km+16km=-(4km+16k+m+4), ¼´12k+16km+5m=0,
2
2
22
2
2
22
22
2
2
2
2
½âµÃk=-2m»òk=-6m,
15
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=-m(x-2)»òy=-mx-2
6
1565
,
ËùÒÔÖ±Ïßl¹ý¶¨µã
65
,0»ò(2,0)(ÉáÈ¥),
×ÛÉÏËùÊöÖ±Ïßl¹ý¶¨µã
65
,0.
6.(2019ºþ±±Î人2Ôµ÷ÑвâÊÔ)ÒÑÖªÍÖÔ²¦£:
??2
??2
+
??2
=1(a>b>0)µÄ³¤Ö᳤Ϊ??2
4,ÀëÐÄÂÊΪ.
¡Ì22
(1)ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì;
(2)¹ýP(1,0)×÷¶¯Ö±ÏßAB½»ÍÖÔ²¦£ÓÚA,BÁ½µã,Q(4,3)ÎªÆ½ÃæÉÏÒ»¶¨µã,Á¬½ÓQA,QB,ÉèÖ±ÏßQA,QBµÄбÂÊ·Ö±ðΪk1,k2,ÎÊk1+k2ÊÇ·ñΪ¶¨Öµ,Èç¹ûÊÇ,ÔòÇó³ö¸Ã¶¨Öµ;·ñÔò,˵Ã÷ÀíÓÉ.
½â(1)ÒÀÌâÒâ2a=4,a=2,e=??=
??¡Ì2,Ôò2
c=¡Ì2,Ôòb2=a2-c2=2,
58
¡àÍÖÔ²¦£µÄ±ê×¼·½³ÌΪ
??24
+
??22
=1.
(2)µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ,ÉèÖ±ÏßAB:y=k(x-1),
ÓëÍÖÔ²½»ÓÚA(x1,y1),B(x2,y2),
??=??(??-1),
ÓÉ{??2
ÏûyÕûÀí¿ÉµÃ(2k2+1)x2-4k2x+2k2
-4=0,ÏÔÈ»¦¤>0,
4
+
??22
=1,
¡àx4??22??2-4
1+x2=2??2+1,x1x2=2??2+1,
´Ó¶øk??1-3-1)-31+k2=??1-4+??2
-3
??2-4
=
??(??1??4+??(??2-1)-3??=k+3??-33??-3
??+k+ 1-2-41-4??2-4
=2k+(3k-3)¡¤(1
1
??1
-4
+??2-4
)
=2k+(3k-3)¡¤??1+??2-8
????
1??2-4(??1+2)+16
=2k+(3k-3)¡¤4??2-8(2??2+1)
2??2-4-4(4??2)+16(2??2+1) =2k+(3k-3)¡¤-2
3=2,
¡Ì6¡Ì6µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ,A1,¡Ì6,B1,-¡Ì6,Ôòk1+k2=2
-32
2
2
1-4
+
--31-4
=2,
×ÛÉÏËùÊö,k1+k2=2.
B×é ÄÜÁ¦ÌáÉý
59
7.(2019ºÚÁú½¹þ¶û±õʦ´ó¸½ÖС¢¶«±±Ê¦´ó¸½ÖС¢ÁÉÄþʡʵÑéÖÐѧһģ)ÒÑÖªÍÖÔ²C1:
??24
+y2=1µÄ×ó¡¢
ÓÒÁ½¸ö¶¥µã·Ö±ðΪA,B,µãPΪÍÖÔ²C1ÉÏÒìÓÚA,BµÄÒ»¸ö¶¯µã,ÉèÖ±ÏßPA,PBµÄбÂÊ·Ö±ðΪk1,k2,Èô¶¯µãQÓëA,BµÄÁ¬ÏßбÂÊ·Ö±ðΪk3,k4,ÇÒk3k4=¦Ëk1k2(¦Ë¡Ù0),¼Ç¶¯µãQµÄ¹ì¼£ÎªÇúÏßC2. (1)µ±¦Ë=4ʱ,ÇóÇúÏßC2µÄ·½³Ì;
(2)ÒÑÖªµãM1,2,Ö±ÏßAMÓëBM·Ö±ðÓëÇúÏßC2½»ÓÚE,FÁ½µã,Éè¡÷AMFµÄÃæ»ýΪS1,¡÷BMEµÄÃæ»ýΪS2,Èô¦Ë¡Ê[1,3],Çó??1µÄȡֵ·¶Î§.
2
1
??½â(1)ÉèP(x0,y0)(x0¡Ù¡À2),Ôò
??204
+??20=1,
ÒòΪA(-2,0),B(2,0),Ôò
??20
??0??0
k1k2=??+¡¤
02??0-2
=
??202??0-4
4
=??2-=-. 44
0
1-
1
ÉèQ(x,y)(x¡Ù¡À2),
ËùÒÔk3k4=??+2¡¤??-2=??2-4=¦Ëk1k2=-4, ??24
??????2
??ÕûÀíµÃ+
??2
=1(x¡Ù¡À2). ??ËùÒÔ,µ±¦Ë=4ʱ,ÇúÏßC2µÄ·½³ÌΪx+y=4(x¡Ù¡À2). (2)ÉèE(x1,y1),F(x2,y2).ÓÉÌâÒâÖª,
Ö±ÏßAMµÄ·½³ÌΪ:x=6y-2,Ö±ÏßBMµÄ·½³ÌΪ:
22
x=-2y+2.
??24
ÓÉ(1)Öª,ÇúÏßC2µÄ·½³ÌΪ+
??2
=1(x¡Ù¡À2), ??ÁªÁ¢{
??=6??-2,6??2
ÏûÈ¥x,µÃ(9¦Ë+1)y-6¦Ëy=0,µÃy1=9??+1, 22
????+4??=4??,
60