江苏省苏州市市区学校2017-2018学年苏科版八年级(下)期末数学试卷(解析版) 下载本文

25.(8分)如图,长度为5的动线段AB分别与坐标系横轴、纵轴的正半轴交于点A、点B,点O和点C关于AB对称,连接CA、CB,过点C作x轴的垂线段CD,交x轴于点D

(1)移动点A,发现在某一时刻,△AOB和以点B、D、C为顶点的三角形相似,求这一时刻点C的坐标;

(2)移动点A,当tan∠OAB=时求点C的坐标.

26.(10分)如图1已知矩形ABCD,AB>AD,点M为矩形中心(AC与BD交点),现有两动点P、Q分别沿着A﹣B﹣C及A﹣D﹣C的方向同时出发匀速运动,速度都为每秒一个单位长度,当点P到达终点C时两动点都停止运动,连接PQ,在运动过程中,设运动时间为t(s),线段PQ长度为d个单位长度,d与t的函数关系如图2

(1)AD= AB= .

(2)t为多少时,线段PQ经过点M?并且求出此时∠APM的度数. (3)运动过程中,连接MQ和MP,求当∠PMQ为直角时的t值.

参考答案与试题解析

一、选择题(每题3分,共8题) 1.解:根据题意得:x﹣2≥0, 解得x≥2. 故选:C.

2.解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意; B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意; C、不是轴对称图形,是中心对称的图形,故本选项不符合题意; D、是轴对称图形,也是中心对称的图形,故本选项符合题意. 故选:D.

3.解:A、了解一批电视机的使用寿命适合抽样调查;

B、了解全省学生的家庭1周内丢弃塑料袋的数量适合抽样调查; C、了解某校八(2)班学生每天用于课外阅读的时间适合全面调查; D、了解苏州市中学生的近视率适合抽样调查; 故选:C. 4.解:A、=

是同类二次根式,故A不正确;

B、与不是同类二次根式,故B正确; C、=2是同类二次根式,故C不正确; D、

=3

是同类二次根式,故D不正确;

故选:B.

5.解:∵y=(k>0),

∴此函数在每个象限内,y随x的增大而减小,

∵点A1(﹣1,y1),A2(﹣3,y2)都在反比例函数y=(k>0)的图象上,﹣∴y1<y2, 故选:B. 6.解:如图所示:

∵∠C=90°,tanA=0.75, ∴tanA=

=,

1>﹣3, ∵BC=6, ∴AC=8. 故选:B.

7.解:∵四边形ABCD为平行四边形, ∴AD∥BC,AD=BC; ∴△DEF∽△BCF, ∴

∵点E是边AD的中点, ∴BC=AD=2DE, ∴

.故选B.

8.解:设A(a,a),C(2a,0),B(2a,b)∵点A在反比例函数y=的图象上,∴a2=6,a=B(2

,b),将B的坐标代入反比例函数得 b=

故B的坐标为(2故选:B.

二、填空题(每题2分,共8题) 9.解:tan30°=

=,

则tan30°的倒数是故答案为:

10.解:∵斜坡AB的坡度i=1:1,

∴∠A=45°, ∴BC=AB?sinA=150故答案为:150

(m),

11.解:由题意可得:次品数量大约为400×0.05=20. 故答案为:20. 12.解:∵∴∴

, =,

=.

故答案是:. 13.解:∵m=1+∴(m+n)2=mn=(1+

)×(1﹣

,n=1﹣

=22=4, )=1﹣2=﹣1,

∴m2+n2﹣3mn

=(m+n)2﹣2mn﹣3mn =(m+n)2﹣5mn =4﹣5×(﹣1) =9, ∴

故答案为:3.

14.解:由题意可得:AB=1.5m,BC=2m,DC=12m, △ABC∽△EDC, 则即

==

, ,

=3.