2019-2020九年级数学上册全册导学案 下载本文

1.用直接开平方法解一元二次方程. 2.理解“降次”思想.

3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?

学习至此,请使用本课时对应训练部分.(10分钟)

21.2.1 配方法(2)

1.会用配方法解数字系数的一元二次方程.

2.掌握配方法和推导过程,能使用配方法解一元二次方程.

重点:掌握配方法解一元二次方程.

难点:把一元二次方程转化为形如(x-a)2=b的过程.

(2分钟)

1.填空:

(1)x2-8x+__16__=(x-__4__)2; (2)9x2+12x+__4__=(3x+__2__)2; pp(3)x2+px+__()2__=(x+____)2.

222.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.

一、自学指导.(10分钟)

问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?

设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.

探究:怎样解方程x2+6x-16=0?

对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?

解:移项,得x2+6x=16,

6b

两边都加上__9__即__()2__,使左边配成x2+bx+()2的形式,得

22

__x2__+6__x__+9=16+__9__,

左边写成平方形式,得

__(x+3)2=25__,

开平方,得

__x+3=±5__, (降次)

即 __x+3=5__或__x+3=-5__,

解一次方程,得x1=__2__,x2=__-8__.

归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.

问题2:解下列方程:

(1)3x2-1=5; (2)4(x-1)2-9=0; (3)4x2+16x+16=9.

15

解:(1)x=±2;(2)x1=-,x2=;

2271

(3)x1=-,x2=-. 22

归纳:利用配方法解方程时应该遵循的步骤:

(1)把方程化为一般形式ax2+bx+c=0;

(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a;

(4)方程两边同时加上一次项系数一半的平方;

(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.

二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:

(1)x2+6x+__9__=(x+__3__)2; 11 (2)x2-x+____=(x-____)2;

42(3)4x2+4x+__1__=(2x+__1__)2.

2.解下列方程:

(1)x2+6x+5=0; (2)2x2+6x+2=0; (3)(1+x)2+2(1+x)-4=0.

解:(1)移项,得x2+6x=-5,

配方得x2+6x+32=-5+32,(x+3)2=4, 由此可得x+3=±2,即x1=-1,x2=-5. (2)移项,得2x2+6x=-2,

二次项系数化为1,得x2+3x=-1, 335

配方得x2+3x+()2=(x+)2=,

2243553

由此可得x+=±,即x1=-,

2222x2=-53-. 22

(3)去括号,整理得x2+4x-1=0, 移项得x2+4x=1, 配方得(x+2)2=5,

x+2=±5,即x1=5-2,x2=-5-2.

点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.

一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)

如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?

解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程: 111

(8-x)(6-x)=××8×6, 222

即x2-14x+24=0, (x-7)2=25, x-7=±5,

∴x1=12,x2=2,

x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.

答:2秒后△PCQ的面积为Rt△ABC面积的一半. 点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.

二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x的方程:

(1)2x2-4x-8=0; (2)x2-4x+2=0; 1

(3)x2-x-1=0 ; (4)2x2+2=5.

2

解:(1)x1=1+5,x2=1-5; (2)x1=2+2,x2=2-2; 117117(3)x1=+,x2=-;

4444(4)x1=

66,x2=-. 22

2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.

解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.

1-

∴(xy)z=[2×(-3)]2=.

36

学生总结本堂课的收获与困惑.(2分钟)

1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.

学习至此,请使用本课时对应训练部分.(10分钟)

21.2.2 公式法

1. 理解一元二次方程求根公式的推导过程,了解公式法的概念. 2. 会熟练应用公式法解一元二次方程.

重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.

(2分钟)

用配方法解方程:

(1)x2+3x+2=0; (2)2x2-3x+5=0. 解:(1)x1=-2,x2=-1; (2)无解.

一、自学指导.(8分钟)

问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?

-b+b2-4ac

问题:已知ax+bx+c=0(a≠0),试推导它的两个根x1=,x2=

2a

2

-b-b2-4ac

. 2a

分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,-b±b2-4ac

将a,b,c代入式子x=就得到方程的根,当b2-4ac<0时,方程没有实数根.

2a

-b±b2-4ac(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.

2a

(3)利用求根公式解一元二次方程的方法叫做公式法.

(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.

(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.

二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论?

(1)2x2-3x=0; (2)3x2-23x+1=0; (3)4x2+x+1=0.

3

解:(1)x1=0,x2=;有两个不相等的实数根;

2 (2)x1=x2=

3

;有两个相等的实数根; 3

(3)无实数根.

点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.