1.用直接开平方法解一元二次方程. 2.理解“降次”思想.
3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.1 配方法(2)
1.会用配方法解数字系数的一元二次方程.
2.掌握配方法和推导过程,能使用配方法解一元二次方程.
重点:掌握配方法解一元二次方程.
难点:把一元二次方程转化为形如(x-a)2=b的过程.
(2分钟)
1.填空:
(1)x2-8x+__16__=(x-__4__)2; (2)9x2+12x+__4__=(3x+__2__)2; pp(3)x2+px+__()2__=(x+____)2.
222.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.
一、自学指导.(10分钟)
问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?
设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.
探究:怎样解方程x2+6x-16=0?
对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?
解:移项,得x2+6x=16,
6b
两边都加上__9__即__()2__,使左边配成x2+bx+()2的形式,得
22
__x2__+6__x__+9=16+__9__,
左边写成平方形式,得
__(x+3)2=25__,
开平方,得
__x+3=±5__, (降次)
即 __x+3=5__或__x+3=-5__,
解一次方程,得x1=__2__,x2=__-8__.
归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.
问题2:解下列方程:
(1)3x2-1=5; (2)4(x-1)2-9=0; (3)4x2+16x+16=9.
15
解:(1)x=±2;(2)x1=-,x2=;
2271
(3)x1=-,x2=-. 22
归纳:利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式ax2+bx+c=0;
(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:
(1)x2+6x+__9__=(x+__3__)2; 11 (2)x2-x+____=(x-____)2;
42(3)4x2+4x+__1__=(2x+__1__)2.
2.解下列方程:
(1)x2+6x+5=0; (2)2x2+6x+2=0; (3)(1+x)2+2(1+x)-4=0.
解:(1)移项,得x2+6x=-5,
配方得x2+6x+32=-5+32,(x+3)2=4, 由此可得x+3=±2,即x1=-1,x2=-5. (2)移项,得2x2+6x=-2,
二次项系数化为1,得x2+3x=-1, 335
配方得x2+3x+()2=(x+)2=,
2243553
由此可得x+=±,即x1=-,
2222x2=-53-. 22
(3)去括号,整理得x2+4x-1=0, 移项得x2+4x=1, 配方得(x+2)2=5,
x+2=±5,即x1=5-2,x2=-5-2.
点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)
如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?
解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程: 111
(8-x)(6-x)=××8×6, 222
即x2-14x+24=0, (x-7)2=25, x-7=±5,
∴x1=12,x2=2,
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
答:2秒后△PCQ的面积为Rt△ABC面积的一半. 点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x的方程:
(1)2x2-4x-8=0; (2)x2-4x+2=0; 1
(3)x2-x-1=0 ; (4)2x2+2=5.
2
解:(1)x1=1+5,x2=1-5; (2)x1=2+2,x2=2-2; 117117(3)x1=+,x2=-;
4444(4)x1=
66,x2=-. 22
2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.
解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.
1-
∴(xy)z=[2×(-3)]2=.
36
学生总结本堂课的收获与困惑.(2分钟)
1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2.2 公式法
1. 理解一元二次方程求根公式的推导过程,了解公式法的概念. 2. 会熟练应用公式法解一元二次方程.
重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.
(2分钟)
用配方法解方程:
(1)x2+3x+2=0; (2)2x2-3x+5=0. 解:(1)x1=-2,x2=-1; (2)无解.
一、自学指导.(8分钟)
问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?
-b+b2-4ac
问题:已知ax+bx+c=0(a≠0),试推导它的两个根x1=,x2=
2a
2
-b-b2-4ac
. 2a
分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,-b±b2-4ac
将a,b,c代入式子x=就得到方程的根,当b2-4ac<0时,方程没有实数根.
2a
-b±b2-4ac(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.
2a
(3)利用求根公式解一元二次方程的方法叫做公式法.
(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.
(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论?
(1)2x2-3x=0; (2)3x2-23x+1=0; (3)4x2+x+1=0.
3
解:(1)x1=0,x2=;有两个不相等的实数根;
2 (2)x1=x2=
3
;有两个相等的实数根; 3
(3)无实数根.
点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.