线性代数第一章课后习题答案 下载本文

(3)B1A2?B2A1?B1?B2 所求的概率为

P(B1A2?B2A1B1?B2)P[(B1A2?B2A1)(B1?B2)] ?P(B1?B2)?P(B1A2?B2A1)16 ?P(B1?B2)3511. 要验收一批100件的乐器,验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件被认为音色不纯,则这批乐器就被拒绝接收,设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95,而一件音色纯的乐器经测试被误认为不纯的概率为0.01,如果已知这100件乐器中恰好有4件是音色不纯的,试问这批乐器被接收的概率是多少?

解:设Bi={随机地取3件乐器,其中有i件是音色不纯的}(i?0,1,2,3) A={这批乐器被接收}

P(AB0)?(0.99)3,P(AB1)?(0.99)2?0.05,P(AB2)?0.99?(0.05)2 P(AB3)?(0.05)3

213123C96C96C4C96C4C4,P(B3)?3 P(B0)?3,P(B1)?3,P(B2)?3C100C100C100C100故由全概率公式有

P(A)??P(ABi)P(Bi)?0.8629

i?0312.设一枚深水炸弹击沉一艘水艇的概率为1/3,击伤的概率为1/2,击不中的概率为1/6,并设击伤两次会导致潜水艇下沉,求施放4枚深水炸弹能击沉潜水艇的概率.

解:设A为“施放4枚深水炸弹,击沉潜水艇” B为“施放4枚深水炸弹,均未击中潜水艇” C为“施放4枚深水炸弹,恰有一枚击则潜水艇”

?1?11?1?P(B)???,P(C)?C4????

62?6???

29

431283?1?11?1? P(A)?1?P(B)?P(C)?1????C4?????2?6?1296?6?

43 30