±ØÐÞÒ»ÊýѧѹÖáÊÔÌ⣨¸½½âÎö£© ÏÂÔØ±¾ÎÄ

22£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ÒÑÖªxÂú×ã²»µÈʽ2(log1x)2?7log1x?3?0£¬

22Çóf(x)?log2½âÎö£º

xx?log2µÄ×î´óÖµÓë×îСֵ¼°ÏàÓ¦42xÖµ£®

ÓÉ2(log1x)2?7log1x?3?0£¬¡à?3?log1x??£¬¡à

222121?log2x?3£¬ 2¶øf(x)?log2xx?log2?(log2x?2)(log2x?1) 4231?(log2x)2?3log2x?2?(log2x?)2?£¬

2431µ±log2x?ʱf(x)min??

24´Ëʱx=2=22£¬

32µ±log2x?3ʱf(x)max?

91??2£¬´Ëʱx?8£® 4421£®£¨14·Ö£©ÒÑÖª¶¨ÒåÓòΪRµÄº¯Êýf(x)?£¨1£©ÇóaÖµ£»

?2x?a2x?1ÊÇÆæº¯Êý

£¨2£©Åжϲ¢Ö¤Ã÷¸Ãº¯ÊýÔÚ¶¨ÒåÓòRÉϵĵ¥µ÷ÐÔ£» £¨3£©Èô¶ÔÈÎÒâµÄt?R£¬²»µÈʽf(tk2?2t)?f(2t?k)?0ºã³ÉÁ¢£¬ÇóʵÊý

2µÄȡֵ·¶Î§£»

x½âÎö£º

1?2£¨1£©ÓÉÌâÉ裬Ðèf(0)??12?a?0,?a?1£¬?f(x)?1 ?2x¾­ÑéÖ¤£¬f(x)ÎªÆæº¯Êý£¬?a?1---------£¨2·Ö£© £¨2£©¼õº¯Êý--------------£¨3·Ö£© Ö¤Ã÷£ºÈÎÈ¡x1,x2?R,x1?x2,?x?x2?x1?0£¬ ÓÉ£¨1£©?y?1?221?21f(x2)?f(x1)?1??x2?21?2x1xx2(2x1?2x2)(1?2x1)(1?2x2)

?x1?x2,?0?2x1?2x2,?2x1?2x2?0,(1?2x1)(1?2x2)?0

1

??y?0

?¸Ãº¯ÊýÔÚ¶¨ÒåÓòRÉÏÊǼõº¯Êý--------------£¨7·Ö£©

£¨3£©ÓÉf(t2?2t)?f(2t?k)?0µÃf(t?2t)??f(2t?k)£¬

222?f(x)ÊÇÆæº¯Êý

£¬f(x)ÊǼõº¯Êý ?f(t2?2t)?f(k?2t2)£¬ÓÉ£¨2£©

?Ô­ÎÊÌâת»¯Îªt2?2t?k?2t2£¬

¼´3t2?2t?k?0¶ÔÈÎÒât?Rºã³ÉÁ¢------£¨10·Ö£©

???4?12k?0,

µÃk??1¼´ÎªËùÇó--- ---(14·Ö)

320¡¢£¨±¾Ð¡ÌâÂú·Ö10·Ö£©

ÒÑÖª¶¨ÒåÔÚÇø¼ä(?1,1)Éϵĺ¯Êýf(x)?(1) ÇóʵÊýa,bµÄÖµ£»

(2) Óö¨ÒåÖ¤Ã÷:º¯Êýf(x)ÔÚÇø¼ä(?1,1)ÉÏÊÇÔöº¯Êý£» (3) ½â¹ØÓÚtµÄ²»µÈʽf(t?1)?f(t)?0. ½âÎö£º (1)ÓÉf(x)?ax?bÎªÆæº¯Êý,ÇÒ 21?xax?b12f()?ÎªÆæº¯Êý,ÇÒ.

1?x225a?b122f()?? 21?(1)252Ôò

a??bx1122f(?)???f()??£¬½âµÃ£ºa?1,b?0¡£?f(x)?1?x221?(?1)2252

(2)Ö¤Ã÷£ºÔÚÇø¼ä(?1,1)ÉÏÈÎÈ¡x1,x2£¬Áî?1?x1?x2?1,

x1x2x1(1?x22)?x2(1?x12)(x1?x2)(1?x1x2) ?f(x1)?f(x2)???222222(1?x1)(1?x2)1?x11?x2(1?x1)(1?x2)? ?1?x1?x2?1 ? x1?x2?0 ,1?x1x2?0 ?f(x1)?f(x2)?0

, (1?x12)?0, (1?x22)?0

¼´f(x1)?f(x2)

¹Êº¯Êýf(x)ÔÚÇø¼ä(?1,1)ÉÏÊÇÔöº¯Êý. (3) ?

f(t?1)?f(t)?0 ? f(t)??f(t?1)?f(1?t)

2

? º¯Êýf(x)ÔÚÇø¼ä(?1,1)ÉÏÊÇÔöº¯Êý

1). 2?t?1?t1?? ??1?t?1 ?0?t?

2??1?1?t?1?¹Ê¹ØÓÚtµÄ²»µÈʽµÄ½â¼¯Îª(0,21£®(14·Ö)¶¨ÒåÔÚR?Éϵĺ¯Êýf(x)¶ÔÈÎÒâʵÊýa,b?R?,¾ùÓÐf(ab)=f(a)+f(b)³ÉÁ¢£¬ÇÒµ±x>1ʱ,f(x)<0£¬ (1)Çóf(1)

(2)ÇóÖ¤£ºf(x)Ϊ¼õº¯Êý

(3)µ±f(4)= -2ʱ£¬½â²»µÈʽf(x?3)?½âÎö£º

£¨1£©ÓÉÌõ¼þµÃf(1)=f(1)+f(1),ËùÒÔf(1)=0

£¨2£©·¨Ò»£ºÉèkΪһ¸ö´óÓÚ1µÄ³£Êý£¬x¡ÊR+£¬Ôò f(kx)=f(x)+f(k)

ÒòΪk>1£¬ËùÒÔf(k)<0£¬ÇÒkx>x

ËùÒÔkx>x,f(kx)

·¨¶þ£ºÉèx1,x2??0,???ÇÒx1?x2Áîx2?kx1,Ôòk?1

f(x1)?f(x2)?f(x1)?f(kx2)?f(x1)?f(k)?f(x2)??f(k)

f(5)??1

ÓÐÌâÖª£¬f(k)<0

?f(x1)?f(x2)?0¼´f(x1)?f(x2)

ËùÒÔf(x)ÔÚ£¨0£¬+?£©ÉÏΪ¼õº¯Êý ·¨Èý£ºÉèx1,x2??0,???ÇÒx1?x2

f(x1)?f(x2)?f(x1)?f(x1?x2x)??f(2)x1x13

?x2x?1?f(2)?0 x1x1?f(x1)?f(x2)?0¼´f(x1)?f(x2)

ËùÒÔf(x)ÔÚ£¨0£¬+?£©ÉÏΪ¼õº¯Êý

22¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£©ÒÑÖª¶¨ÒåÔÚ[1£¬4]Éϵĺ¯Êýf(x)£½x-2bx+(b¡Ý1)£¬

2

b4(I)Çóf(x)µÄ×îСֵg(b)£» (II)Çóg(b)µÄ×î´óÖµM¡£ ½âÎö£º

f(x)=(x-b)-b+µÄ¶Ô³ÆÖáΪֱÏßx£½b£¨ b¡Ý1£©£¬

2

2

b4(I) ¢Ùµ±1¡Üb¡Ü4ʱ£¬g(b)£½f(b)£½-b+; ¢Úµ±b£¾4ʱ£¬g(b)£½f(4)

2

b4£½16-31b£¬

4×ÛÉÏËùÊö£¬f(x)µÄ×îСֵ

?2b?b? (1¡Üb¡Ü4)??4 ¡£g(b)£½?

31?16?b (b£¾4)??42

(II) ¢Ùµ±1¡Üb¡Ü4ʱ£¬g(b)£½-b+£½-(b-)+

2

b4181£¬ 64¡àµ±b£½1ʱ£¬

M£½g(1)£½-£» ¢Úµ±b£¾4ʱ£¬g(b)£½16--£¬

×ÛÉÏËùÊö£¬g(b)µÄ×î´óÖµM= -¡£ 22¡¢£¨12·Ö£©É躯Êý

f(x)?loga(x?3a)(a?0,ÇÒa?1)£¬µ±µãP(x,y)ÊǺ¯Êý

343131bÊǼõº¯Êý£¬¡àg(b)£¼16-¡Á4£½-15£¼

443434y?f(x)ͼÏóÉϵĵãʱ£¬µãQ(x?2a,?y)ÊǺ¯Êýy?g(x)ͼÏóÉϵĵã.

£¨1£©Ð´³öº¯Êýy?g(x)µÄ½âÎöʽ£»

4