?G(j?)?tg??180 两个特殊点: ① ω=0时, G(j?)?? ② ω=∞时, G(j?)?0幅相特性曲线如图解5-6(2)所示。
5-7 已知系统开环传递函数 G(s)??10,?G(j?)??1800 ,?G(j?)??900
K(?T2s?1); K,T1,T2?0
s(T1s?1)当??1时,?G(j?)??180?,G(j?)?0.5。系统的单位速度稳态误差essv。试写出系统开环频率特性表达式G(j?)。
解 G(s)?先绘制G0(s)??1?K(T2s?1)
s(T1s?1)K(T2s?1)的幅相曲线,然后顺时针转180°即可得到G(j?)幅相曲线
s(T1s?1)。G0(s)的零极点分布图及幅相曲线分别如图解5-7(a)、(b)所示。G(s)的幅相曲线如图解5-7(c)所示。
依题意有:
Kv?limsG(s)?K, essv?1K?1,因此K?1。
s?0?G(j1)??arctanT2?90??arctanT1??180?
arctanT1?arctanT2?arctanT1?T2?90?
1?T1T2T1T2?1
1?T1T2?j(T1?T2)(T1?T2)另有: G(j1)?(1?jT2)(1?jT1)???0.5 2221?T11?T21?T2T22?2T2?1?2T1?T22?2T2?1?2T2?0
T23?2T22?T2?2?(T22?1)(T2?2)?0
81
可得:
T2?2,T1?1T2?0.5,K?1。
1?j2?
j?(1?j0.5?)所以: G(j?)?5-8 已知系统开环传递函数
G(s)?10 2s(s?1)(s?1)试概略绘制系统开环幅相曲线。
解 G(j?)的零极点分布图如图解5-9(a)所示。
??0??变化时,有 G(j0?)????90? G(j1?)????135? G(1?)???315?
G(j?)?0??360?
分析s平面各零极点矢量随??0??的变化趋势,可以绘出开环幅相曲线如图解5-8(b)所示。
5-9 绘制下列传递函数的渐近对数幅频特性曲线。
2;
(2s?1)(8s?1)200 (2) G(s)?2;
s(s?1)(10s?1)40(s?0.5) (3) G(s)?
s(s?0.2)(s2?s?1)20(3s?1) (4) G(s)?2
s(6s?1)(s2?4s?25)(10s?1)(1) G(s)? 82
(5) G(s)?
8(s?0.1)
s(s2?s?1)(s2?4s?25)2
(2s?1)(8s?1)解 (1) G(s)?
图解5-9(1) Bode图 Nyquist图
(2) G(s)?200
s2(s?1)(10s?1)
图解5-9(2) Bode图 Nyquist图
83
(3) G(s)?40(s?0.5)?2s(s?0.2)(s?s?1)100(2s?1)ss(?1)(s2?s?1)0.2
图解5-9(3) Bode图 Nyquist图
(4) G(s)?
20(3s?1)
s2(6s?1)(s2?4s?25)(10s?1)20(3s?1)25 G(s)?2??s??42s(6s?1)????s?1?(10s?1)25??5????
图解5-9(4) Bode图 Nyquist图
84