《自动控制原理》习题及解答05额度ed 下载本文

第五章习题与解答

5-1 试求题5-1图(a)、(b)网络的频率特性。

CR1urR1R2CucurR2uc

(a) (b)

题5-1图 R-C网络

解 (a)依图:

1sCR2?1R1?sCU(j?)R2?j?R1R2CK(1?j?1?) Ga(j?)?c ??1Ur(j?)R1?R2?j?R1R2C1?jT1?R1 (b)依图:

Uc(s)?Ur(s)R2?K1(?1s?1)T1s?1R2?K??1R?R12?? ??1?R1C?RRC?T1?12?R1?R2?Uc(s)?Ur(s)R2?1sC1sC??2s?1T2s?1R1?R2???2?R2C ??T2?(R1?R2)C Gb(j?)?

Uc(j?)1?j?R2C1?j?2? ??Ur(j?)1?j?(R1?R2)C1?jT2? 5-2 某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出cs(t)和稳态误差es(t)

2t (1) r(t)?sin (2) r(t)?sin(t?30?)?2cos(2t?45?)

题5-2图 反馈控制系统结构图

77

解 系统闭环传递函数为: ?(s)?频率特性:

1 s?2?(j?)?12?? ??j22j??24??4??12幅频特性: ?(j?)?4????) 相频特性: ?(?)?arctan(21s?1系统误差传递函数: ?e(s)??,

1?G(s)s?2则 ?e(j?)?

1??24??2,?e(j?)?arctan??arctan(?2)

(1)当r(t)?sin2t时, ??2,rm=1 则 ?(j?)??2?18 2?e(j2)?arctan?18.4?6?? css?rm?(j2)sin(2t??)?0.35sin(2t?45)

ess?rm?e(j2)sin(2t??e)?0.79sin(2t?18.4) (2) 当 r(t)?sin(t?30?)?2cos(2t?45?)时: ? ?(j1)???e(j?)??2?85?0.35, ?(j2)?arctan(?2)??45? 2?0.79,??1?1,??2?2,rm1?1rm2?2

5?1?0.45?(j1)?arctan()??26.5? 52101 ?e(j1)??0.63?e(j1)?arctan()?18.4?

53?? css(t)?rm?(j1)?sin[t?30??(j1)]?rm?(j2)?cos[2t?45??(j2)]

?0.4sin(t?3.4)?0.7cos(2t?90)

ess(t)?rm?e(j1)?sin[t?30??e(j1)]?rm?e(j2)?cos[2t?45??e(j2)] ?0.63sin(t?48.4)?1.58cos(2t?26.6)

5-3 若系统单位阶跃响应 h(t)?1?1.8e?4t???????0.8e?9t78

t?0

试求系统频率特性。

11.80.836???,ss?4s?9s(s?4)(s?9)C(s)36则 ??(s)?R(s)(s?4)(s?9)36频率特性为 ?(j?)?

(j??4)(j??9) 解 C(s)?

5-4 绘制下列传递函数的幅相曲线:

G(s)?K/s (1)R(s)?1 sG(s)?K/s2 G(s)?K/s3 (3))KK?j(??G(j)??e2 解 (1)j??G(j0)?? ??0,G(j?)?0 ???, (2) ?(?)???2

幅频特性如图解5-4(a)。 (2)(j?)2?2G(j0)?? ??0,G(j?)?0 ???, ?(?)???

幅频特性如图解5-4(b)。

G(j?)?K?Ke?j(?)

KK?j(32?)G(j?)??e (3) 图解5-4

(j?)3?3G(j0)?? ??0,G(j?)?0 ???,?3??(?)?

2幅频特性如图解5-4(c)。

5-5 已知系统开环传递函数

10

s(2s?1)(s2?0.5s?1)试分别计算 ??0.5 和??2 时开环频率特性的幅值A(?)和相角?(?)。

G(s)H(s)? 79

解 G(j?)H(j?)? A(?)?10

j?(1?j2?)((1??2?j0.5?)102222(1??)?(0.5?)0.5? ?(?)??90??arctan2??arctan 21???A(0.5)?17.8885?A(2)?0.3835计算可得 ? ?

?(0.5)??153.435??(2)??327.53???

5-6 试绘制下列传递函数的幅相曲线。

?1?(2?)

5

(2s?1)(8s?1)10(1?s)G(s)? (2)

s25解 (1) G(j?)? 222(1?16?)?(10?) (1) G(s)? ?G(j?)??tg2??tg8???tg取ω为不同值进行计算并描点画图,可以作出准确图形 三个特殊点: ① ω=0时, G(j?)?5, ② ω=0.25时, G(j?)?2, ③ ω=∞时, G(j?)?0,幅相特性曲线如图解5-6(1)所示。

4320.410-1-2-0.6-3-4-1-0.8012Real Axis345-1-9-8-7-6-5-4Real Axis-3-2-100.20-0.2-0.410.80.6x 108?1?1?110?

1?16?2?G(j?)?00 ?G(j?)??90? ?G(j?)??1800

图解5-6(1)Nyquist图 图解5-6(2) Nyquist图

x 1014

(2) G(j?)?101??2?2

80