金城外国语学校初三数学导学案
课题:§6.3 二次函数的应用(3) 执笔:汪宪宜 审核:初三数学备课组
学习目标:
了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 学习重点:
是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.
学习难点:
本节难点在于能正确理解题意,找准数量关系.建立直角坐标系。 学习过程:
一、 自主学习,相互探究课本27页的问题2
1、本课时将探索由形(函数图像)到数(函数关系式)的实际问题,这里的“形”是由运动产生的,一旦运动停止,“形”便消失,确定这些隐性的函数关系式,并进行有效调控,可以使实际问题获得理想的解决。
2、根据D点的几何性,确定其坐标; 3、给出符合实际的解释。 二、分组做一做
1、在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y=-15x2+10x.
(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少? (2)经过多长时间,炮弹落在地上爆炸?
2、如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m. (1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?
三、收获与学法归纳
1、探索问题解决的总体思路和方案;
2、合理的建立平面直角坐标系;将抛物线形的事物数学化; 3、根据平面坐标系中的图像特征,探求抛物线的解析式;
4、对求得的结果要进行科学的取舍。 四、课堂训练
1.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请
判断这辆汽车能否顺利通过大门.
2.一个涵洞成抛物线形,它的截面如图现测得,当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?
3、如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。
金城外国语学校初三数学导学案
课题:§6.3 二次函数的应用(4) 执笔:汪宪宜 审核:初三数学备课组
学习目标:
1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。 学习过程:
一、预备练习:
1、如图所示的抛物线的解析式可设为 ,若AB∥x轴,且AB=4,OC=1,则点A的坐标为 ,点B的坐标为 ;代入解析式可得出此抛物线的解析式为 。
2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶点O到水面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。
二、新课导学:
例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽
20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
3、平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学生
丙的身高是1.5米,请你算一算学生丁的身高。
三、课堂练习:
1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=?125当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) x,
2A、5米 B、6米; C、8米; D、9米
2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?(结果精确到0.1m).
3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽
AB=1.6 m时,涵洞顶点与水面的距离为1.5 m处,涵洞宽ED是多少?是否会超过
4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.
2.4 m.这时,离开水面 1 m?
表示.
(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗? (2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用