自动回转分度工作台毕业设计 下载本文

结论

本课题设计了自动分度回转工作台,按照以下面方案步骤进行设计。

1. 自动分度回转工作台的设计方案。主要由工作台的机械传动设计方案和控制系统的设计方案。工作台的机械传动设计方案主要是根据工作台的功能选择传动的方式,有齿轮传动和蜗杆传动等选择。控制系统的设计方案主要是根据工作的功能选择单片机,键盘显示控制芯片,数据储存器等元件。

2. 自动分度回转工作台机械设计,主要包括工作台总体参数的设计和部分机械参数设计。工作台总体参数的设计主要为系统传动比,工作回转速度等参数的设计,而工作台部分机械参数包括工作台外形尺寸设计,步进电机的选择,齿轮传动尺寸参数设计,蜗杆传动尺寸参数设计,蜗杆轴的尺寸参数设计,轴承的选择,键选择和联轴器的选择等。

3.自动分度回转工作台控制系统设计。主要包括单片机主控电路设计,I/0扩展电路设计,步进电机接口电路设计和键盘显示电路设计四大部分。

4. 自动分度回转工作台的图纸设计。机械传动方面图纸设计包括自动分度回转工作台装配图设计,蜗杆轴和定心轴零件图设计,齿轮传动零件图设计和蜗轮蜗杆的零件图设计;控制部分图纸设计主要为控制系统的总体电气控制图。

致谢

本次毕业设计首先要感谢导师陈跃,设计种我遇到了很多问题,陈跃老师对我的设计不厌其烦的指点、细致地为我讲解我所缺乏的知识;我查阅的资料过多难以合理运用,陈跃老师细心为我梳理脉络,使我以此确立了本设计的框架。我的毕业设计的完成与陈跃老师的大量帮助是离不开的,我真诚的感谢陈跃老师的为我所有的付出。

其次感谢大学四年来的各位任课老师,为我毕业设计打下了扎实的基础,从课程设计到毕业设计给了我不少的设计经验,我能完成本次设计,也是与他们的严谨的教学分不开的,真诚的感谢他们四年来对我的栽培和教导!

还要感谢本小组同学的关心和帮助,在我毕业设计的控制系统设计中,向我提供了不少宝贵设计的建议,使我才能很顺利的完成了毕业设计的控制系统设计。

最好我要感谢我的父母,感谢他们含辛茹苦的培养我长大,又为我铺好学习的道路,感谢他们四年来给予我物质帮助和精神支持,让我顺利完成学业,完成毕业设计。

在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,谢谢大家给予的帮助,在这里再次请接受我诚挚的谢意!谢谢你们!我将用我以后的成就来回报我的母校,回报所有关心和爱护我的人!谢谢你们!

参考文献

[1].机械原理与设计 .王三民 .诸文俊 .机械工业出版社 .2000 [2].机械设计基础课程设计指导书. 陈立德. 高等教育出版社 .2000 [3].机械设计邱宣怀 .高等教育出版社 .1997 [4].电机学 .徐德淦 .机械工业出版社 .2009

[5].微单片机原理及应用 .张毅刚 .高等教育出版社 .2003 [6]. 电动机的单片机控制 .王小明 .北京航空航天大学出版社 .2002 [7]. 机电一体化系统设计 .赵松年 .机械工业出版社 .2004

[8]. 机械设计手册 .机械设计手册编委会 .机械工业出版社 .2004

[9]. Development of intelligent monitoring and optimization of cutting process for CNC turning .MORIWAKI .International Journal of Computer Integrated Manufacturing .2006 2: 106-109

[10]. NC Technology and Applications .Academic Press .Xiao-Shan Gao and Dongming Wang .2000: 20-27

附录

附录1

GEAR AND SHAFT INTRODUCTION

Abstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways . Key words: Wheel gear;Shaft

In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.

Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.

The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.

Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel