C£®[8,9] [´ð°¸] B
D£®(0,8)
[½âÎö] 2£½1£«1£½f(3)£«f(3)£½f(9)£¬ÓÉf(x)£«f(x£8)¡Ü2£¬¿ÉµÃf(x(x£8))¡Üf(9)£¬
x>0£¬??
ÒòΪf(x)ÊǶ¨ÒåÔÚ(0£¬£«¡Þ)ÉϵÄÔöº¯Êý£¬ËùÒÔÓÐ?x£8>0£¬
??xx£
½Ç¶ÈËÄ
ÀûÓõ¥µ÷ÐÔÇó²ÎÊýµÄȡֵ·¶Î§»òÖµ
£¬
2
½âµÃ8£¼x¡Ü9.
£x£ax£5£¬x¡Ü1£¬??
[µäÌâ6] (1)[2017¡¤ºþÄÏʦ´ó¸½ÖÐÔ¿¼]ÒÑÖªº¯Êýf(x)£½?a£¬x>1??xRÉϵÄÔöº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ( )
A£®[£3,0) C£®[£3£¬£2] [´ð°¸] C
B£®(£¡Þ£¬£2] D£®(£¡Þ£¬0)
ÊÇ
a>0£¬
??a[½âÎö] ÓÉÌâÉè¿ÉµÃ?£¡Ý1£¬2??a¡Ý£1£a£5£¬
½âµÃ£3¡Üa¡Ü£2£¬¹ÊÑ¡C.
a£x£¬x¡Ý2£¬??
(2)ÒÑÖªº¯Êýf(x)£½??1?x??£1£¬x<2???2?
Âú×ã¶ÔÈÎÒâµÄʵÊýx1¡Ùx2£¬¶¼ÓÐ
fx1£fx2
<0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª( )
x1£x2
A£®(£¡Þ£¬2) C£®(£¡Þ£¬2] [´ð°¸] B
13??£¡Þ£¬B£®?? 8??
?13?D£®?£¬2?
?8?
a£2<0£¬??
[½âÎö] ÓÉÌâÒâ¿ÉÖª£¬º¯Êýf(x)ÊÇRÉϵļõº¯Êý£¬ÓÚÊÇÓÐ?
a£??
13?13?Óɴ˽âµÃa¡Ü£¬¼´ÊµÊýaµÄȡֵ·¶Î§ÊÇ?£¡Þ£¬?.
8?8?
?1?2£1£¬
?2???
- 9 -
[µãʯ³É½ð] º¯Êýµ¥µ÷ÐÔÓ¦ÓÃÎÊÌâµÄ³£¼ûÀàÐͼ°½âÌâ²ßÂÔ
(1)±È½Ï´óС£®±È½Ïº¯ÊýÖµµÄ´óС£¬Ó¦½«×Ô±äÁ¿×ª»¯µ½Í¬Ò»¸öµ¥µ÷Çø¼äÄÚ£¬È»ºóÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½â¾ö£®
(2)½â²»µÈʽ£®ÔÚÇó½âÓë³éÏóº¯ÊýÓйصIJ»µÈʽʱ£¬ÍùÍùÊÇÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½«¡°f¡±·ûºÅÍѵô£¬Ê¹Æäת»¯Îª¾ßÌåµÄ²»µÈʽÇó½â£®´ËÊ±Ó¦ÌØ±ð×¢Ò⺯ÊýµÄ¶¨ÒåÓò£®
(3)ÀûÓõ¥µ÷ÐÔÇó²ÎÊý£®
¢ÙÊÓ²ÎÊýΪÒÑÖªÊý£¬ÒÀ¾Ýº¯ÊýµÄͼÏó»òµ¥µ÷ÐÔ¶¨Ò壬ȷ¶¨º¯ÊýµÄµ¥µ÷Çø¼ä£¬ÓëÒÑÖªµ¥µ÷Çø¼ä±È½ÏÇó²ÎÊý£»
¢ÚÐè×¢ÒâÈôº¯ÊýÔÚÇø¼ä[a£¬b]ÉÏÊǵ¥µ÷µÄ£¬Ôò¸Ãº¯ÊýÔÚ´ËÇø¼äµÄÈÎÒâ×Ó¼¯Çø¼äÉÏÒ²Êǵ¥µ÷µÄ£®
(4)ÀûÓõ¥µ÷ÐÔÇó×îÖµ£®Ó¦ÏÈÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬È»ºóÔÙÓɵ¥µ÷ÐÔÇó³ö×îÖµ£®
[·½·¨¼¼ÇÉ] 1.ÀûÓö¨ÒåÖ¤Ã÷»òÅжϺ¯Êýµ¥µ÷ÐԵIJ½Öè (1)ȡֵ£»(2)×÷²î£»(3)±äÐΣ»(4)¶¨ºÅ£»(5)ϽáÂÛ£® 2£®ÅжϺ¯Êýµ¥µ÷ÐԵij£Ó÷½·¨
(1)¶¨Òå·¨£»(2)¸´ºÏ·¨£ºÍ¬ÔöÒì¼õ£»(3)µ¼Êý·¨£»(4)ͼÏ󷨣® 3£®ÉèÈÎÒâx1£¬x2¡Ê[a£¬b]ÇÒx1< x2£¬ÄÇô (1)
fx1£fx2fx1£fx2
>0?f(x)ÔÚ[a£¬b]ÉÏÊÇÔöº¯Êý£»<0?f(x)ÔÚ[a£¬b]
x1£x2x1£x2
ÉÏÊǼõº¯Êý£®
(2)(x1£x2)[f(x1)£f(x2)]>0?f(x)ÔÚ[a£¬b]ÉÏÊÇÔöº¯Êý£»(x1£x2)[f(x1)£f(x2)]<0?f(x)ÔÚ[a£¬b]ÉÏÊǼõº¯Êý£®
[Ò×´í·À·¶] 1.Çø·ÖÁ½¸ö¸ÅÄ¡°º¯ÊýµÄµ¥µ÷Çø¼ä¡±ºÍ¡°º¯ÊýÔÚÄ³Çø¼äÉϵ¥µ÷¡±£¬Ç°ÕßÖ¸º¯Êý¾ß±¸µ¥µ÷ÐԵġ°×î´ó¡±µÄÇø¼ä£¬ºóÕßÊÇǰÕß¡°×î´ó¡±Çø¼äµÄ×Ó¼¯£®
2£®Èôº¯ÊýÔÚÁ½¸ö²»Í¬µÄÇø¼äÉϵ¥µ÷ÐÔÏàͬ£¬ÔòÕâÁ½¸öÇø¼äÒª·Ö¿ªÐ´£¬²»ÄÜд³É²¢¼¯£®
ÕæÌâÑÝÁ·¼¯Ñµ
1£®[2014¡¤±±¾©¾í]ÏÂÁк¯ÊýÖУ¬ÔÚÇø¼ä(0£¬£«¡Þ)ÉÏΪÔöº¯ÊýµÄÊÇ( ) A£®y£½x£«1 C£®y£½2 ´ð°¸£ºA
½âÎö£ºAÏº¯Êýy£½x£«1ÔÚ[£1£¬£«¡Þ)ÉÏΪÔöº¯Êý£¬ËùÒÔº¯ÊýÔÚ(0£¬£«¡Þ)ÉÏΪÔöº¯
£xB£®y£½(x£1) D£®y£½log0.5(x£«1)
2
- 10 -
Êý£¬¹ÊÕýÈ·£»BÏº¯Êýy£½(x£1)ÔÚ(£¡Þ£¬1)ÉÏΪ¼õº¯Êý£¬ÔÚ[1£¬£«¡Þ)ÉÏΪÔöº¯Êý£¬¹Ê´í
2
?1?x£xÎó£»CÏº¯Êýy£½2£½??ÔÚRÉÏΪ¼õº¯Êý£¬¹Ê´íÎó£»DÏº¯Êýy£½log0.5(x£«1)ÔÚ(£1£¬
?2?
£«¡Þ)ÉÏΪ¼õº¯Êý£¬¹Ê´íÎó£®
2£®[2014¡¤ÉÂÎ÷¾í]ÏÂÁк¯ÊýÖУ¬Âú×ã¡°f(x£«y)£½f(x)f(y)¡±µÄµ¥µ÷µÝÔöº¯ÊýÊÇ( ) 1 2
A£®f(x)£½x
B£®f(x)£½x D£®f(x)£½3
x3
?1?xC£®f(x)£½??
?2?
´ð°¸£ºD
½âÎö£º¸ù¾Ý¸÷Ñ¡ÏîÖª£¬Ñ¡ÏîC£¬DÖеÄÖ¸Êýº¯ÊýÂú×ãf(x£«y)£½f(x)¡¤f(y)£®ÓÖf(x)£½3ÊÇÔöº¯Êý£¬¹ÊÑ¡D.
3£®[2015¡¤Ìì½ò¾í]ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf(x)£½2
|x£m|
x£1(mΪʵÊý)Ϊżº¯Êý£¬¼Ça£½
f(log0.53)£¬b£½f(log25)£¬c£½f(2m)£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª( )
A£®a£¼b£¼c C£®c£¼a£¼b ´ð°¸£ºC ½âÎö£ºÓÉf(x)£½2
|x £m|
B£®a£¼c£¼b D£®c£¼b£¼a
£1ÊÇżº¯Êý¿ÉÖªm£½0£¬ËùÒÔf(x)£½2£1.
0.5
3|
|x|
ËùÒÔa£½f(log0.53)£½2
|log
£1£½2
|log3|
2
£1£½2£¬b£½f(log25)£½2
|log5|
2
£1£½2
|log5|
2
£1£½4£¬
c£½f(0)£½2|0|£1£½0£¬ËùÒÔc 4£®[2014¡¤Ð¿αêÈ«¹ú¾í¢ò]ÒÑ֪żº¯Êýf(x)ÔÚ[0£¬£«¡Þ)µ¥µ÷µÝ¼õ£¬f(2)£½0.Èôf(x£1)>0£¬ÔòxµÄȡֵ·¶Î§ÊÇ________£® ´ð°¸£º(£1,3) ½âÎö£ºÓÉÌâ¿ÉÖª£¬µ±£2 ??x£3x£¬x¡Üa£¬ 5£®[2016¡¤±±¾©¾í]É躯Êýf(x)£½? ?£2x£¬x£¾a.? 3 (1)Èôa£½0£¬Ôòf(x)µÄ×î´óֵΪ________£» (2)Èôf(x)ÎÞ×î´óÖµ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ________£® ´ð°¸£º(1)2 (2)(£¡Þ£¬£1) ??x£3x£¬x¡Ü0£¬ ½âÎö£º(1)Èôa£½0£¬Ôòf(x)£½? ?£2x£¬x>0£¬? 2 3 µ±x>0ʱ£¬£2x<0£»µ±x¡Ü0ʱ£¬f¡ä(x) £½3x£3£½3(x£«1)(x£1)£¬Áîf¡ä(x)>0£¬µÃx<£1£¬f¡ä(x)<0£¬µÃ£1 - 11 - f(£1)£½2.×ÛÉϿɵ㬺¯Êýf(x)µÄ×î´óֵΪ2. (2)º¯Êýy£½x£3xÓëy£½£2xµÄ´óÖÂͼÏóÈçͼËùʾ£® 3 ??x£3x£¬x¡Üa£¬ Èôº¯Êýf(x)£½? ?£2x£¬x>a? 3 ÎÞ×î´óÖµ£¬ÓÉͼÏó¿ÉÖª£2a>2£¬½âµÃa<£1. ¿ÎÍâÍØÕ¹ÔĶÁ ת»¯Ó뻯¹é˼ÏëÔÚÇó½âº¯Êý²»µÈʽÖеÄÓ¦Óà [µäÀý] [2017¡¤ÉÂÎ÷Î÷°²Ä£Äâ]ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×㣺 ¢Ùf(x£«y)£½f(x)£«f(y)£«1£» ¢Úµ±x>0ʱ£¬f(x)>£1. (1)Çóf(0)µÄÖµ£¬²¢Ö¤Ã÷f(x)ÔÚRÉÏÊǵ¥µ÷Ôöº¯Êý£» (2)Èôf(1)£½1£¬½â¹ØÓÚxµÄ²»µÈʽf(x£«2x)£«f(1£x)>4. [ÉóÌâÊÓ½Ç] (1)¶ÔÓÚ³éÏóº¯ÊýµÄµ¥µ÷ÐÔµÄÖ¤Ã÷£¬Ö»ÄÜÓö¨Ò壮½èÖúÓÚ¸³Öµ·¨±È½Ï³öf(x2)Óëf(x1)µÄ´óС£® (2)½«º¯Êý²»µÈʽÖеijéÏóº¯Êý·ûºÅ¡°f¡±ÔËÓõ¥µ÷ÐÔ¡°È¥µô¡±ÊDZ¾Ð¡ÌâµÄÇÐÈëµã£®Òª¹¹Ôì³öf(M)>f(N)µÄÐÎʽ£® [½â] (1)Áîx£½y£½0£¬µÃf(0)£½£1. ÔÚRÉÏÈÎÈ¡x1>x2£¬ Ôòx1£x2>0£¬f(x1£x2)>£1. ÓÖf(x1)£½f((x1£x2)£«x2)£½f(x1£x2)£«f(x2)£«1>f(x2)£¬ ËùÒÔº¯Êýf(x)ÔÚRÉÏÊǵ¥µ÷Ôöº¯Êý£® (2)ÓÉf(1)£½1£¬µÃf(2)£½3£¬f(3)£½5. ÓÉf(x£«2x)£«f(1£x)>4£¬µÃf(x£«x£«1)>f(3)£¬ ÓÖº¯Êýf(x)ÔÚRÉÏÊÇÔöº¯Êý£¬¹Êx£«x£«1>3£¬ - 12 - 2 2 2 2