(¿Î±êͨÓÃ)2018Äê¸ß¿¼ÊýѧһÂÖ¸´Ï°µÚ¶þÕº¯Êý¸ÅÄîÓë»ù±¾³õµÈº¯Êý¢ñ2.2º¯ÊýµÄµ¥µ÷ÐÔÓë×îֵѧ°¸Àí ÏÂÔØ±¾ÎÄ

C£®[8,9] [´ð°¸] B

D£®(0,8)

[½âÎö] 2£½1£«1£½f(3)£«f(3)£½f(9)£¬ÓÉf(x)£«f(x£­8)¡Ü2£¬¿ÉµÃf(x(x£­8))¡Üf(9)£¬

x>0£¬??

ÒòΪf(x)ÊǶ¨ÒåÔÚ(0£¬£«¡Þ)ÉϵÄÔöº¯Êý£¬ËùÒÔÓÐ?x£­8>0£¬

??xx£­

½Ç¶ÈËÄ

ÀûÓõ¥µ÷ÐÔÇó²ÎÊýµÄȡֵ·¶Î§»òÖµ

£¬

2

½âµÃ8£¼x¡Ü9.

£­x£­ax£­5£¬x¡Ü1£¬??

[µäÌâ6] (1)[2017¡¤ºþÄÏʦ´ó¸½ÖÐÔ¿¼]ÒÑÖªº¯Êýf(x)£½?a£¬x>1??xRÉϵÄÔöº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ( )

A£®[£­3,0) C£®[£­3£¬£­2] [´ð°¸] C

B£®(£­¡Þ£¬£­2] D£®(£­¡Þ£¬0)

ÊÇ

a>0£¬

??a[½âÎö] ÓÉÌâÉè¿ÉµÃ?£­¡Ý1£¬2??a¡Ý£­1£­a£­5£¬

½âµÃ£­3¡Üa¡Ü£­2£¬¹ÊÑ¡C.

a£­x£¬x¡Ý2£¬??

(2)ÒÑÖªº¯Êýf(x)£½??1?x??£­1£¬x<2???2?

Âú×ã¶ÔÈÎÒâµÄʵÊýx1¡Ùx2£¬¶¼ÓÐ

fx1£­fx2

<0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª( )

x1£­x2

A£®(£­¡Þ£¬2) C£®(£­¡Þ£¬2] [´ð°¸] B

13??£­¡Þ£¬B£®?? 8??

?13?D£®?£¬2?

?8?

a£­2<0£¬??

[½âÎö] ÓÉÌâÒâ¿ÉÖª£¬º¯Êýf(x)ÊÇRÉϵļõº¯Êý£¬ÓÚÊÇÓÐ?

a£­??

13?13?Óɴ˽âµÃa¡Ü£¬¼´ÊµÊýaµÄȡֵ·¶Î§ÊÇ?£­¡Þ£¬?.

8?8?

?1?2£­1£¬

?2???

- 9 -

[µãʯ³É½ð] º¯Êýµ¥µ÷ÐÔÓ¦ÓÃÎÊÌâµÄ³£¼ûÀàÐͼ°½âÌâ²ßÂÔ

(1)±È½Ï´óС£®±È½Ïº¯ÊýÖµµÄ´óС£¬Ó¦½«×Ô±äÁ¿×ª»¯µ½Í¬Ò»¸öµ¥µ÷Çø¼äÄÚ£¬È»ºóÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½â¾ö£®

(2)½â²»µÈʽ£®ÔÚÇó½âÓë³éÏóº¯ÊýÓйصIJ»µÈʽʱ£¬ÍùÍùÊÇÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½«¡°f¡±·ûºÅÍѵô£¬Ê¹Æäת»¯Îª¾ßÌåµÄ²»µÈʽÇó½â£®´ËÊ±Ó¦ÌØ±ð×¢Ò⺯ÊýµÄ¶¨ÒåÓò£®

(3)ÀûÓõ¥µ÷ÐÔÇó²ÎÊý£®

¢ÙÊÓ²ÎÊýΪÒÑÖªÊý£¬ÒÀ¾Ýº¯ÊýµÄͼÏó»òµ¥µ÷ÐÔ¶¨Ò壬ȷ¶¨º¯ÊýµÄµ¥µ÷Çø¼ä£¬ÓëÒÑÖªµ¥µ÷Çø¼ä±È½ÏÇó²ÎÊý£»

¢ÚÐè×¢ÒâÈôº¯ÊýÔÚÇø¼ä[a£¬b]ÉÏÊǵ¥µ÷µÄ£¬Ôò¸Ãº¯ÊýÔÚ´ËÇø¼äµÄÈÎÒâ×Ó¼¯Çø¼äÉÏÒ²Êǵ¥µ÷µÄ£®

(4)ÀûÓõ¥µ÷ÐÔÇó×îÖµ£®Ó¦ÏÈÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬È»ºóÔÙÓɵ¥µ÷ÐÔÇó³ö×îÖµ£®

[·½·¨¼¼ÇÉ] 1.ÀûÓö¨ÒåÖ¤Ã÷»òÅжϺ¯Êýµ¥µ÷ÐԵIJ½Öè (1)ȡֵ£»(2)×÷²î£»(3)±äÐΣ»(4)¶¨ºÅ£»(5)ϽáÂÛ£® 2£®ÅжϺ¯Êýµ¥µ÷ÐԵij£Ó÷½·¨

(1)¶¨Òå·¨£»(2)¸´ºÏ·¨£ºÍ¬ÔöÒì¼õ£»(3)µ¼Êý·¨£»(4)ͼÏ󷨣® 3£®ÉèÈÎÒâx1£¬x2¡Ê[a£¬b]ÇÒx1< x2£¬ÄÇô (1)

fx1£­fx2fx1£­fx2

>0?f(x)ÔÚ[a£¬b]ÉÏÊÇÔöº¯Êý£»<0?f(x)ÔÚ[a£¬b]

x1£­x2x1£­x2

ÉÏÊǼõº¯Êý£®

(2)(x1£­x2)[f(x1)£­f(x2)]>0?f(x)ÔÚ[a£¬b]ÉÏÊÇÔöº¯Êý£»(x1£­x2)[f(x1)£­f(x2)]<0?f(x)ÔÚ[a£¬b]ÉÏÊǼõº¯Êý£®

[Ò×´í·À·¶] 1.Çø·ÖÁ½¸ö¸ÅÄ¡°º¯ÊýµÄµ¥µ÷Çø¼ä¡±ºÍ¡°º¯ÊýÔÚÄ³Çø¼äÉϵ¥µ÷¡±£¬Ç°ÕßÖ¸º¯Êý¾ß±¸µ¥µ÷ÐԵġ°×î´ó¡±µÄÇø¼ä£¬ºóÕßÊÇǰÕß¡°×î´ó¡±Çø¼äµÄ×Ó¼¯£®

2£®Èôº¯ÊýÔÚÁ½¸ö²»Í¬µÄÇø¼äÉϵ¥µ÷ÐÔÏàͬ£¬ÔòÕâÁ½¸öÇø¼äÒª·Ö¿ªÐ´£¬²»ÄÜд³É²¢¼¯£®

ÕæÌâÑÝÁ·¼¯Ñµ

1£®[2014¡¤±±¾©¾í]ÏÂÁк¯ÊýÖУ¬ÔÚÇø¼ä(0£¬£«¡Þ)ÉÏΪÔöº¯ÊýµÄÊÇ( ) A£®y£½x£«1 C£®y£½2 ´ð°¸£ºA

½âÎö£ºAÏº¯Êýy£½x£«1ÔÚ[£­1£¬£«¡Þ)ÉÏΪÔöº¯Êý£¬ËùÒÔº¯ÊýÔÚ(0£¬£«¡Þ)ÉÏΪÔöº¯

£­xB£®y£½(x£­1) D£®y£½log0.5(x£«1)

2

- 10 -

Êý£¬¹ÊÕýÈ·£»BÏº¯Êýy£½(x£­1)ÔÚ(£­¡Þ£¬1)ÉÏΪ¼õº¯Êý£¬ÔÚ[1£¬£«¡Þ)ÉÏΪÔöº¯Êý£¬¹Ê´í

2

?1?x£­xÎó£»CÏº¯Êýy£½2£½??ÔÚRÉÏΪ¼õº¯Êý£¬¹Ê´íÎó£»DÏº¯Êýy£½log0.5(x£«1)ÔÚ(£­1£¬

?2?

£«¡Þ)ÉÏΪ¼õº¯Êý£¬¹Ê´íÎó£®

2£®[2014¡¤ÉÂÎ÷¾í]ÏÂÁк¯ÊýÖУ¬Âú×ã¡°f(x£«y)£½f(x)f(y)¡±µÄµ¥µ÷µÝÔöº¯ÊýÊÇ( ) 1 2

A£®f(x)£½x

B£®f(x)£½x D£®f(x)£½3

x3

?1?xC£®f(x)£½??

?2?

´ð°¸£ºD

½âÎö£º¸ù¾Ý¸÷Ñ¡ÏîÖª£¬Ñ¡ÏîC£¬DÖеÄÖ¸Êýº¯ÊýÂú×ãf(x£«y)£½f(x)¡¤f(y)£®ÓÖf(x)£½3ÊÇÔöº¯Êý£¬¹ÊÑ¡D.

3£®[2015¡¤Ìì½ò¾í]ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf(x)£½2

|x£­m|

x£­1(mΪʵÊý)Ϊżº¯Êý£¬¼Ça£½

f(log0.53)£¬b£½f(log25)£¬c£½f(2m)£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª( )

A£®a£¼b£¼c C£®c£¼a£¼b ´ð°¸£ºC ½âÎö£ºÓÉf(x)£½2

|x £­m|

B£®a£¼c£¼b D£®c£¼b£¼a

£­1ÊÇżº¯Êý¿ÉÖªm£½0£¬ËùÒÔf(x)£½2£­1.

0.5

3|

|x|

ËùÒÔa£½f(log0.53)£½2

|log

£­1£½2

|log3|

2

£­1£½2£¬b£½f(log25)£½2

|log5|

2

£­1£½2

|log5|

2

£­1£½4£¬

c£½f(0)£½2|0|£­1£½0£¬ËùÒÔc

4£®[2014¡¤Ð¿αêÈ«¹ú¾í¢ò]ÒÑ֪żº¯Êýf(x)ÔÚ[0£¬£«¡Þ)µ¥µ÷µÝ¼õ£¬f(2)£½0.Èôf(x£­1)>0£¬ÔòxµÄȡֵ·¶Î§ÊÇ________£®

´ð°¸£º(£­1,3)

½âÎö£ºÓÉÌâ¿ÉÖª£¬µ±£­20.f(x£­1)µÄͼÏóÊÇÓÉf(x)µÄͼÏóÏòÓÒÆ½ÒÆ1¸öµ¥Î»³¤¶ÈµÃµ½µÄ£¬Èôf(x£­1)>0£¬Ôò£­1

??x£­3x£¬x¡Üa£¬

5£®[2016¡¤±±¾©¾í]É躯Êýf(x)£½?

?£­2x£¬x£¾a.?

3

(1)Èôa£½0£¬Ôòf(x)µÄ×î´óֵΪ________£»

(2)Èôf(x)ÎÞ×î´óÖµ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ________£® ´ð°¸£º(1)2 (2)(£­¡Þ£¬£­1)

??x£­3x£¬x¡Ü0£¬

½âÎö£º(1)Èôa£½0£¬Ôòf(x)£½?

?£­2x£¬x>0£¬?

2

3

µ±x>0ʱ£¬£­2x<0£»µ±x¡Ü0ʱ£¬f¡ä(x)

£½3x£­3£½3(x£«1)(x£­1)£¬Áîf¡ä(x)>0£¬µÃx<£­1£¬f¡ä(x)<0£¬µÃ£­1

- 11 -

f(£­1)£½2.×ÛÉϿɵ㬺¯Êýf(x)µÄ×î´óֵΪ2.

(2)º¯Êýy£½x£­3xÓëy£½£­2xµÄ´óÖÂͼÏóÈçͼËùʾ£®

3

??x£­3x£¬x¡Üa£¬

Èôº¯Êýf(x)£½?

?£­2x£¬x>a?

3

ÎÞ×î´óÖµ£¬ÓÉͼÏó¿ÉÖª£­2a>2£¬½âµÃa<£­1.

¿ÎÍâÍØÕ¹ÔĶÁ

ת»¯Ó뻯¹é˼ÏëÔÚÇó½âº¯Êý²»µÈʽÖеÄÓ¦ÓÃ

[µäÀý] [2017¡¤ÉÂÎ÷Î÷°²Ä£Äâ]ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×㣺 ¢Ùf(x£«y)£½f(x)£«f(y)£«1£» ¢Úµ±x>0ʱ£¬f(x)>£­1.

(1)Çóf(0)µÄÖµ£¬²¢Ö¤Ã÷f(x)ÔÚRÉÏÊǵ¥µ÷Ôöº¯Êý£» (2)Èôf(1)£½1£¬½â¹ØÓÚxµÄ²»µÈʽf(x£«2x)£«f(1£­x)>4.

[ÉóÌâÊÓ½Ç] (1)¶ÔÓÚ³éÏóº¯ÊýµÄµ¥µ÷ÐÔµÄÖ¤Ã÷£¬Ö»ÄÜÓö¨Ò壮½èÖúÓÚ¸³Öµ·¨±È½Ï³öf(x2)Óëf(x1)µÄ´óС£®

(2)½«º¯Êý²»µÈʽÖеijéÏóº¯Êý·ûºÅ¡°f¡±ÔËÓõ¥µ÷ÐÔ¡°È¥µô¡±ÊDZ¾Ð¡ÌâµÄÇÐÈëµã£®Òª¹¹Ôì³öf(M)>f(N)µÄÐÎʽ£®

[½â] (1)Áîx£½y£½0£¬µÃf(0)£½£­1. ÔÚRÉÏÈÎÈ¡x1>x2£¬

Ôòx1£­x2>0£¬f(x1£­x2)>£­1.

ÓÖf(x1)£½f((x1£­x2)£«x2)£½f(x1£­x2)£«f(x2)£«1>f(x2)£¬ ËùÒÔº¯Êýf(x)ÔÚRÉÏÊǵ¥µ÷Ôöº¯Êý£® (2)ÓÉf(1)£½1£¬µÃf(2)£½3£¬f(3)£½5.

ÓÉf(x£«2x)£«f(1£­x)>4£¬µÃf(x£«x£«1)>f(3)£¬ ÓÖº¯Êýf(x)ÔÚRÉÏÊÇÔöº¯Êý£¬¹Êx£«x£«1>3£¬

- 12 -

2

2

2

2