舰载机航空发动机设计方案
一·本型航空发动机的应用领域
舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土 ,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。
舰载机航空发动机设计方案
二·航空发动机的性能设计指标
推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10
耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h
三·航空发动机的结构形式
3.1压气机
采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两
舰载机航空发动机设计方案
个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。
压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转
舰载机航空发动机设计方案
子结构,兼有可拆卸转子和不可拆卸转子的优点,对制造技术和工艺要求不太高,同时也给设计者提供了广阔的选择空间,并且方便检查、维修和更换。
工作叶片采用了可控扩散叶型,叶型厚度及曲率按最佳分布。基本消除了附面层的分离,增加了压气机有效流通面积,提高了压气机效率。叶型的叶弦较宽,前后较厚,具有较好的抗腐蚀和抗冲击性。端部过弯叶身是为了减少叶片两端壁附面层所造成的二次损失,因而将叶身尖端和根部前、后绕特别的加以弯曲。这种新一代高效能叶片,使压气机的级效率及压气机的特性得到了进一步的提高。
喘振对轴流压气机是最危险的状态,使机组发生强烈的振动, 造成推力瓦过负荷, 能在很短时间内引起压气机的损坏。因此, 压气机应绝对避免在喘振区运行。由于压气机运行工况的改变,特别是在供风外网阻力突然增大(如高炉悬料或管道系统阀门误关闭), 使压气机出口风压突然上升(风量突然减小), 压气机将会迅速逼近甚至闯人喘振点而引起喘振, 即使运行操作人员监盘如何高度集中,处理如何迅速, 往往仍避免不了压气机发生喘振, 只是使喘振现象能得到及时处理。为此, 压气机防喘振保护是必不可少的, 其可靠性也是头等重要的。为了避免在叶尖处产生旋转失速,利用吹起和放气来控制附面层比较有效,采用在机匣内壁上加工成环捎、料槽,使失速裕度大大改善。同时,采用双转子压气机防喘,在相同总增压比及总级数时,当压气机转子分开