实验三 离散时间信号的DTFT
实验三 离散时间信号的DTFT
一、实验目的
1. 运用MATLAB计算离散时间系统的频率响应。 2. 运用MATLAB验证离散时间傅立叶变换的性质。
二、实验原理
(一)、计算离散时间系统的DTFT 已知一个离散时间系统
NN?ak?0ky(n?k)??bkx(n?k),可以用MATLAB函数
k?0frequz非常方便地在给定的L个离散频率点???l处进行计算。由于H(ej?)是ω的连续函数,需要尽可能大地选取L的值(因为严格说,在MATLAB中不使用symbolic工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot产生的图形和真实离散时间傅立叶变换的图形尽可能一致。在MATLAB中,freqz计算出序列{b0,b1,?,bM}和{a0,a1,?,aN}的L点离散傅立叶变换,然后对其离散傅立叶变换值相除得到
H(ej?l),l?1,2,?,L。为了更加方便快速地运算,应将L的值选为2的幂,如256
或者512。
例3.1 运用MATLAB画出以下系统的频率响应。 y(n)-0.6y(n-1)=2x(n)+x(n-1) 程序:
clf;
w=-4*pi:8*pi/511:4*pi; num=[2 1];den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h));grid title(‘H(e^{j\\omega}的实部’)) xlabel(‘\\omega/ \\pi’);
9
实验三 离散时间信号的DTFT
ylabel(‘振幅’);
subplot(2,1,1)
plot(w/pi,imag(h));grid title(‘H(e^{j\\omega}的虚部’)) xlabel(‘\\omega/ \\pi’); ylabel(‘振幅’);
(二)、离散时间傅立叶变换DTFT的性质。 1.时移与频移
设 X(ej?)?FT[x(n)], 那么
?j?n0j?FT[x(n?n)]?eX(e) (2.2.6) 0
FT[ej?0nx(n)]?X(ej(???0)) (2.2.7)
2.时域卷积定理
如果 y(n)?x(n)?h(n), 那么
Y(ej?)?X(ej?)?H(ej?)
三、实验内容与步骤
1. 已知因果线性时不变离散时间系统
y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2) 运用MATLAB画出该系统的频率响应。
2.运行下面程序并显示它,验证离散时间傅立叶变换DTFT的时移性。
clf;
w=-pi:2*pi/255: pi;wo=0.4*pi;D=10; num=[1 2 3 4 5 6 7 8 9]; h1=freqz(num,1,w);
h2=freqz([zeros(1,D) num],1,w); subplot(2,2,1)
10
实验三 离散时间信号的DTFT
plot(w/pi,abs(h1));grid title(‘原序列的幅度谱’) subplot(2,2,2)
plot(w/pi,abs(h2));grid title(‘时移后序列的幅度谱’) subplot(2,2,3)
plot(w/pi,angle (h1));grid title(‘原序列的相位谱’) subplot(2,2,4)
plot(w/pi, angle (h2));grid title(‘时移后序列的相位谱’)
3. 运行下面程序并显示它,验证离散时间傅立叶变换DTFT的频移性。
clf;
w=-pi:2*pi/255: pi;wo=0.4*pi;D=10;
num1=[1 3 5 7 9 11 13 15 17];L=length(num1); h1=freqz(num1,1,w);n=0:L-1; num2=exp(wo*i*n).*num1; h2=freqz(num2,1,w); subplot(2,2,1)
plot(w/pi,abs(h1));grid title(‘原序列的幅度谱’) subplot(2,2,2)
plot(w/pi,abs(h2));grid title(‘频移后序列的幅度谱’) subplot(2,2,3)
plot(w/pi,angle (h1));grid title(‘原序列的相位谱’) subplot(2,2,4)
plot(w/pi, angle (h2));grid title(‘频移后序列的相位谱’)
11
实验三 离散时间信号的DTFT
4.运行下面程序并显示它,验证离散时间傅立叶变换时域卷积性质。
clf;
w=-pi:2*pi/255: pi; x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -2 3 -2 1]; y=conv(x1,x2); h1=freqz(x1,1,w); h2=freqz(x2,1,w); hp=hi.*h2; h3=freqz(y,1,w); subplot(2,2,1)
plot(w/pi,abs (hp));grid title(‘幅度谱的乘积’) subplot(2,2,2)
plot(w/pi,abs (h3));grid title(‘卷积后序列的幅度谱’) subplot(2,2,3)
plot(w/pi,angle (hp));grid title(‘相位谱的和’) subplot(2,2,4)
plot(w/pi,angle (h3));grid title(‘卷积后序列的相位谱’)
四、实验仪器设备
计算机,MATLAB软件
五、实验注意事项
课前预先阅读并理解实验程序;
六、思考题
1.讨论实验程序1中的离散时间系统的频率响应是离散的还是连续的,是否是周期的?周期为多少?
2.讨论实验程序2中h1和h2的关系是什么?哪个参数控制时移量?
12