µÚÒ»Õ MATLABÈëÃÅ 9
9 ¿¼ÂǺ¯Êý f(x,y)= y3/9+3x2y+9x2+y2+xy+9 (1)×÷³öf(x,y)ÔÚ-2 10. ¼Ù¶¨Ä³ÌìµÄÆøα仯¼Ç¼ÈçµÚ¶þÕÂÏ°Ìâ5£¬ÊÔÓÃ×îС¶þ³Ë·½·¨ÕÒ³öÕâÒ»ÌìµÄÆøα仯¹æÂÉ¡£¿¼ÂÇÏÂÁÐÀàÐͺ¯Êý, ×÷ͼ±È½ÏЧ¹û£¬²¢¼ÆËã¾ù·½Îó²î¡£ (1) ¶þ´Îº¯Êý£» (2) Èý´Îº¯Êý£» (3) ÖÓÐκ¯Êýf(x)?aeb(t?14)£» (4) º¯Êýf(x)?rsin(2?12t??). 11 (»¯Ñ§·´Ó¦Æ½ºâ) Ò»µÈ¿Ë·Ö×ÓÊýÒ»Ñõ»¯Ì¼(CO)ºÍÑõÆø(O2)µÄ»ìºÏÎïÔÚ300KºÍ5barѹÁ¦Ï´ﵽƽºâ£¬ÀíÂÛ·´Ó¦·½³ÌʽΪ CO + 0.5 O2 ? CO2 ʵ¼Ê·´Ó¦·½³ÌʽΪ CO + N2 ? x CO + 0.5 (1 +x) O2 + (1 - x) CO2 Ê£ÓàCO±ÈÖµxÂú×㻯ѧƽºâ·½³Ìʽ Kp?(1?x)1052.?x 0?x?1 x1?xpÕâÀïKp = 3.06, p = 5 barÇóx. 12 (Ô»¹¿î¶î)×÷Ϊ·¿²ú¹«Ë¾µÄ´úÀíÈË£¬ÄãҪѸËÙ׼ȷ»Ø´ð¿Í»§¸÷·½ÃæµÄÎÊÌâ¡£ÏÖÔÚÓиö¿Í»§¿´ÖÐÁËÄ㹫˾һÌ×½¨ÖþÃæ»ýΪ180ƽ·½Ã×£¬Ã¿Æ½·½µ¥¼Û7500ÔªµÄ·¿×Ó¡£Ëû¼Æ»®Ê׸¶30%£¬ÆäÓà70%ÓÃ20Äê°´½Ò´û¿î£¨´û¿îÄêÀûÂÊ5.04%£©¡£ÇëÄãÌṩÏÂÁÐÐÅÏ¢£º·¿ÎÝ×ܼ۸ñ¡¢Ê׸¶¿î¶î¡¢Ô¸¶»¹¿î¶î¡£Èç¹ûÆäÖÐ10ÍòԪΪ¹«»ý½ð´û¿î£¨´û¿îÄêÀûÂÊ4.05%£©ÄØ£¿ 13£¨Ë¨Å£±ÇµÄÉþ×Ó£©Å©·òÀÏÀîÓÐÒ»¸ö°ë¾¶10Ã×µÄÔ²ÐÎÅ£À¸£¬ÀïÃ泤ÂúÁ˲ݣ¬ÀÏÀîÒª½«¼ÒÀïһͷţ˨ÔÚÒ»¸ùÀ¸×®ÉÏ£¬µ«Ö»ÈÃÅ£³Ôµ½Ò»°ë²Ý£¬ËûÏëÈÃÉÏ´óѧµÄ¶ù×Ó¸æËßËû£¬Ë¨Å£±ÇµÄÉþ×ÓӦΪ¶à³¤£¿ ? 14 (Ïҽط¨)Å£¶Ùµü´ú·¨ÊÇÒ»ÖÖËٶȺܿìµÄµü´ú·½·¨£¬µ«ÊÇËüÐèÒªÔ¤ÏÈÇóµÃµ¼º¯Êý¡£ÈôÓòîÉÌ´úÌæµ¼Êý£¬¿ÉµÃÏÂÁÐÏҽط¨ xk?1?xk?xk?xk?1f(xk) f(xk)?f(xk?1) 10 µÚÒ»Õ MATLABÈëÃÅ ÕâÒ»µü´ú·¨ÐèÒªÁ½¸ö³õÖµx0, x1£¬±àдһ¸öͨÓõÄÏҽط¨¼ÆËã»ú³ÌÐò²¢ÓÃÒÔ½âÏ°Ìâ2¡£(Ìáʾ: º¯Êý²ÎÊýÇóÖµÓÃMATLABº¯Êýfeval) ? 15 (ÏßÐÔµü´ú) µü´ú¹ý³Ì x k+1 = g (x k) µÄÊÕÁ²ÐÔÖ÷ÒªÌõ¼þÊÇÔÚ¸ùµÄ¸½½üÂú×ã?g ¡® (x)?<1¡£´ÓÀíÂÛÉÏÖ¤Ã÷ÏßÐÔµü´ú x k+1 = a x k + 1 Ö»ÓÐÁ½ÖÖ¼«ÏÞÐÎ̬£º²»¶¯µã»òÎÞÇî´ó¡£·Ö±ð¾Ía=0.9, -0.9, 1.1, -1.1 (È¡x0 =1, µü´ú20²½)ÓÃͼÐÎÏÔʾµü´ú¹ý³ÌµÄ²»Í¬±íÏÖ(Ìáʾ£ºÓÃsubplot½«4¸ö×Óͼ·ÅÔÚÒ»¸öͼÐδ°¿Ú±È½Ï) ? 16 (ͨµÀÖеÄϸ¸Ë) ÒªÔËËÍÒ»¸ùϸ¸Ë×Óͨ¹ýÓÉ¿í5cmºÍ¿í10cmµÄͨµÀ´¹Ö±½»²æ¿Ú£¬ÔÚÔËË͹ý³ÌÖбØÐë±£³Ö¸Ë×ÓÊÇˮƽµÄ(Èçͼ4.6)£¬ÎÊÕâ¸ùϸ¸ËÖÁ¶à¿ÉÓж೤£¿ÓÖͨµÀΪ԰ÖùÐεÄÇÒϸ¸Ë²»±Ø±£³Öˮƽ£¬Ï¸¸ËÖÁ¶à¿ÉÓж೤£¿ 5cm ? ? ? 17 Ö¤Ã÷µ±ÇÒ½öµ±3 19 (HenonÎüÒý×Ó) »ìãçºÍ·ÖÐεÄÖøÃûÀý×Ó£¬µü´úÄ£ÐÍΪ ͼ4.6 È¡³õÖµx0 = 0, y0 = 0, ½øÐÐ3000´Îµü´ú£¬¶ÔÓÚk>1000, ÔÚ(xk, yk) ´¦ÁÁÒ»µã(×¢Òâ²»ÒªÁ¬Ïß)¿ÉµÃ ËùνHenonÒýÁ¦Ïßͼ. µÚÒ»Õ MATLABÈëÃÅ 11 Ï°Ìâ5 1£®Ä³ºÓ´²µÄºá¶ÏÃæÈçͼ5.8Ëùʾ£¬ÎªÁ˼ÆËã×î´óµÄÅźéÁ¿£¬ÐèÒª¼ÆËãËüµÄ¶ÏÃæ»ý£¬ÊÔ¸ù¾Ýͼʾ²âÁ¿Êý¾Ý£¨µ¥Î»£ºÃ×£©ÓÃÌÝÐη¨¼ÆËãÆä¶ÏÃæ»ý¡£ 2£®Çóͼ5.8¸÷²âÁ¿µãµÄƶȡ£ 3£®×÷ͼ±íʾº¯Êýz?xe 4. ÒÑÖª²ÎÊý·½³Ì? ?x2?y3ͼ5.8 ( -1 ?x?lncost?y?cost?tsint, 0 dydyºÍdxdxµÄÊýÖµ½â¡£ x??1 5. ÇóÏÂÁлý·ÖµÄÊýÖµ½â (1) ?112?310e?x22dx, (2) ?2?0e2xcos3(x)dx £¬ (3) (6) ??xln(x4)arcsin111sin(x)1?xxdx , , (4), (5)dxdx??200xx2?0d??1?r2sin(?)dr£¬(7)??(1?x?y2)dydx, DΪx2+y2?2x 0D 6 (ÍÖÔ°µÄÖܳ¤) Óûý·Ö·¨¼ÆËãÏÂÁÐÍÖÔ°µÄÖܳ¤ 7.(ÇúÃæµÄÃæ»ý) Çóº¯Êýz?xe ?x2?y2 x2y2??1 49( -1 12 µÚÒ»Õ MATLABÈëÃÅ 8 (¼ÙÆæÒì»ý·Ö)ÊÔÇóÏÂÁлý·Ö, ³öÏÖʲôÎÊÌ⣿·ÖÎöÔÒò£¬Éè·¨Çó³öÕýÈ·µÄ½â¡£ 9 ¿¼ÂÇ»ý·ÖI(k) = I= ?1?1x0.2cos(x)dx ?k?0sin(x)dx=2k, ÊÔ·Ö±ðÓÃtrapz£¨È¡²½³¤h=0.1»ò?£©, quad ºÍquadl Çó½âI(8) ºÍI(32)¡£·¢ÏÖʲôÎÊÌ⣿ 10. (1) ÓóÌÐòderiv.mÇóf(x)=x2sin(x2+3x-4)ÔÚx=1.3ºÍx=1.5µÄµ¼Êý£¬Ê¹¾«¶È´ïµ½10-3¡£ (2) ±àдÓù«Ê½(5.21)Çóº¯ÊýÔÚijһµã¶þ½×µ¼Êý´ïµ½Ö¸¶¨¾«¶ÈµÄËã·¨³ÌÐò£¬²¢Óô˳ÌÐòÇóf(x)=x2sin(x2-x-2)ÔÚx=1.4µÄ¶þ½×µ¼Êý£¬Ê¹¾«¶È´ïµ½10-3¡£ 11ͼ5.9aºÍͼ5.9bÖи÷ÓÐÁ½ÌõÇúÏß(´ÖÏßΪxÖá)£¬±æÈÏÿ·ùͼÖÐÄÄÌõÊÇf(x)ÄÄÌõÊÇf (x)µÄµ¼º¯Êý?Ϊʲô£¿ ͼ5.9b ͼ5.9a 12 (ÐÁÆÕÉú»ý·Ö·¨)±àÖÆÒ»¸ö¶¨²½³¤ÐÁÆÕÉú·¨ÊýÖµ»ý·Ö³ÌÐò¡£¼ÆË㹫ʽΪ I?Sn= h(f1+4f2+2f3+4f4+¡+2fn-1+4fn+fn+1) 3ÆäÖÐnΪżÊý£¬h=(b-a)/n, fi=f(a+(i-1)h). ²¢È¡n=5£¬Ó¦ÓÃÓÚ½âÏ°Ìâ5(1)¡£ 13 (ĦÍгµ)Ò»¸öÖØ5400kgµÄĦÍгµÔÚÒÔËÙ¶Èv=30m/sÐÐʻʱͻȻϨ»ð£¬É軬Ðз½³ÌΪ dv=-8.276 v2 - 2000 dxxΪ»¬ÐоàÀ룬¼ÆËãÒª»¬Ðж೤¾àÀëºó, ËٶȿɽµÖÁ15m/s¡£ ? 14 Ò»Ìõ³¤µÊ±»ÀÎÀι̶¨ÔÚµØÉÏ£¬µÊÃæˮƽ¡£¿¼ÂÇÈô¸É¿éשÔÚ³¤µÊÒ»¶Ëµþ³É½×ÌÝ×´¶ø¾¡Á¿ÏòÍâÑÓÉì¡£Ò»¿éש·ÅÔÚ³¤µÊÓҶ˼«¶ËλÖÃÊÇשµÄÒ»°ëÔÚÍ⣬µ«µÚ¶þ¿éשÈôÈÔ·ÅÒ»°ë(Èçͼ5.9)±Ø 5400v ͼ5.9