河南理工大学2012届毕业设计
其主要反应为:
CH4+H2O→CO+3H2 (2-13)
该反应为吸热反应,提高温度,有利于乙烷的转化。反应中需在反应管外燃烧燃料气间接外供热量,反应管需用耐高温的镍铬不锈钢制造,转化炉喷嘴多,结构复杂,制造要求高,造价高。常用于天然气的一段转化,焦炉煤气的乙烷含量仅为天然气的l/4,一般不采用蒸汽转化工艺。
②纯氧非催化部分氧化转化工艺
在纯氧非催化部分氧化转化工艺中,主要的转化反应分两个阶段,第一阶段为CH4、H2、CO的燃烧放热反应;第二阶段为甲烷转化为H2和CO阶段,是吸热的二次反应,为整个转化工艺的控制步骤,反应式为:
CH4+ H2O→CO+3H2 (2-14)
合成乙醇时要求新鲜合成气中CH4体积分数要低于0.4%。由于CH4转化是吸热反应,受热力学平衡的限制,纯氧非催化部分氧化转化工艺的转化温度必须在1200℃以上。纯氧非催化部分氧化转化工艺,生成的合成气氢碳比较为理想;合成乙醇时循环气中惰性气含量较低,有利于节能减排;尤其是转化过程不需要催化剂,无催化剂中毒问题,因此对原料气要求宽松,转化前焦炉煤气不需要深度脱硫净化,精脱硫过程可从转化前移到转化后;对于原料气中形态复杂、化学稳定性高、湿法脱硫无法脱除的噻吩、硫醚、硫醇类有机硫,在高达1200℃以上的高温转化场所全部被裂解为H2S和COS,可在转化后方便地将其脱除。相对于消耗大、造价的干法加氢转化脱硫,非催化部分氧化转化工艺使焦炉煤气脱硫净化过程大大简化,脱硫精度高,原料气净化成本低,减少了排放硫化物对环境的二次污染,是将来焦炉煤气净化与转化的发展方向。
非催化部分氧化转化工艺不足之处在于:在转化气的净化工艺中选择湿法脱硫工艺必然要同时脱碳,这样作为乙醇合成气的原料气中碳严重不够,单位乙醇消耗原料气比纯氧催化转化工艺多30%,纯氧耗量高;转化温度比催化氧化转化温度约高200℃,转化炉顶焦炉煤气烧嘴寿命短;到目前为止尚没有非催化部分氧化转化工艺的商业化应用先例,因此不采用纯氧非催化部分氧化转化工艺。
③纯氧催化部分氧化转化工艺
由于非催化部分氧化转化工艺需在1300~1400℃的高温下进行烷烃的转化反应,原料气消耗和纯氧消耗高。降低转化温度,加入蒸汽参与烷烃转化,加入催化剂加快转化反应速度,这就是纯氧催化部分氧化转化技术。
来自精脱硫的原料气,与部分蒸汽混合后进人催化部分氧化转化炉烧嘴,氧气经蒸汽预热后与部分蒸汽混合进入转化炉烧嘴,焦炉煤气和氧气在烧嘴中混合并喷出,在转化炉上部进行部分燃烧反应,然后进入转化炉下部的镍催化剂床层进行转化反应,反应后的气体经热量回收后去合成工段。其主要化学反应式为:
9
河南理工大学2012届毕业设计
H2+O2 → 2H2O (2-15) CH4+ H2O →CO+3H2 (2-16) CH4+CO2→2CO+2H2 (2-17)
上述反应中,反应(2-16)是控制步骤,控制指标为:转化后合成气中乙烷体积分数≤0.4%,对于总硫体积分数超标的原料气,可在催化部分氧化转化后再串接氧化锌脱硫槽,将原料气从氧化锌脱硫槽中通过,以确保合成气总硫体积分数达标。相对于非催化部分氧化法,纯氧催化部分氧化法燃料气和氧气消耗低,转化炉结构较简单,造价相对较低,有良好的规模化商业应用业绩,是目前广泛采用的焦炉煤气烷烃转化方案。本设计采用纯氧催化部分氧化法转化工序。
无论是催化还是非催化转化,焦炉煤气与纯氧都要在烧嘴中混合,烧嘴既要促进焦炉煤气与氧气混合,又要与炉体匹配形成适宜流场,进而形成适宜的温度分布。烧嘴是转化炉系统的关键设备,烧嘴的设计是转化工艺的核心技术。
乙醇转化工段的工艺有以下特点:转化炉氧气导入采用金属中心烧嘴。烧嘴按照独特工艺、使用特殊金属材料制作,烧嘴保护冷却水采用水处理工段提供的脱盐水,和保护蒸汽一起保证了烧嘴的安全稳定运行,延长了烧嘴使用寿命。
在上述工艺流程中,精脱硫与转化是整个焦炉煤气制乙醇的关键技术。工艺流程图如下:
来自焦化厂的焦炉气煤气 储气罐缓冲稳压 原料气压缩 加氢转化精 脱硫 精制乙醇 乙醇精 乙醇合 合成压纯氧催化部分氧缩气 化空分工段
2.5合成气压缩工段
来自净化的原料气,进入二合一机组。该机组为蒸汽透平驱动,可以同时压缩原料气和循环气,出口的压力为3-l0MPa。
10
河南理工大学2012届毕业设计
2.6 乙醇的合成
2.6.1 乙醇合成工艺的选择
乙醇的合成工艺按合成压力主要分为高压、中压和低压法。铬催化剂,合成压力为30MPa,合高压法的缺点是能耗高、设备复杂、产品质量差,现已淘汰。低压法相对于高压法设备简单、物料和动力消耗低、产品质量好、造价节省,具有明显的优越性,是目前合成乙醇的主要方法。
2.6.2 乙醇合成塔的选择
乙醇合成反应器实际是乙醇合成系统中最重要的设备。从操作结构,材料及维修等方面考虑,乙醇合成反应器应具有以下要求:
(1)催化剂床层温度易于控制,调节灵活,能有效移走反应热,并能以较高位能回收反应热;
(2)反应器内部结构合理,能保证气体均匀通过催化剂床层,阻力小,气体处理量大,合成转化率高,催化剂生产强度大;
(3)结构紧凑,尽可能多填装催化剂,提高高压空间利用率;高压容器及内件间无渗漏;催化剂装御方便;制造安装及维修容易。
乙醇合成塔主要由外筒、内件和电加热器三部分组成。内件是由催化剂筐和换热器两部分组成。根据内件的催化剂筐和换热器的结构形式不同,乙醇内件份为若干类型。
按气体在催化剂床的流向可分为:轴向式、径向式和轴径复合型。 按催化剂筐内反应惹得移出方式可分为冷管型连续换热式和冷激型多段换热式两大类。
按换热器的形式分为列管式、螺旋板式、波纹板式等多种形式。 目前,国内外的大型乙醇合成塔塔型较多,归纳起来可分为五种: (1)冷激式合成塔
这是用进塔冷气冷激来带走反应热。该塔结构简单,也适于大型化。但碳的转化率低,出塔的乙醇浓度低,循环量大,能耗高,又不能副产蒸汽,现已经基本被淘汰。
(2)冷管式合成塔
这种合成塔源于氨合成塔,在催化剂内设置足够换热面积的冷气管,用进塔冷管来移走反应热。冷管的结构有逆流式、并流式和U型管式。由于逆流式与合成反应的放热不相适应,即床层出口处温差最大,但这时反应放热最小,而在床层上部反应最快、放热最多,但温差却又最小,为克服这种不足,冷管改为并
11
河南理工大学2012届毕业设计
流或U形冷管。如1984年ICI公司提出的逆流式冷管型及1993年提出的并流冷管TCC型合成塔和国内林达公司的U形冷管型。这种塔型碳转化率较高但仅能在出塔气中副产0.4MPa的低压蒸汽,日前大型装置很少使用。
(3)水管式合成塔
将床层内的传热管由管内走冷气改为走沸腾水。这样可较大地提高传热系数,更好地移走反应热,缩小传热面积,多装催化剂,同时可副产2.5Mpa-4.0MPa的中压蒸汽,是大型化较理想的塔型。
(4)固定管板列管合成塔
这种合成塔就是一台列管换热器,催化剂在管内,管间(壳程)是沸腾水,将反应热用于副产3.0MPa~4.0MPa的中压蒸汽。代表塔型有Lurgi公司的合成塔和三菱公司套管超级合成塔,该塔是在列管内再增加一小管,小管内走进塔的冷气。进一步强化传热,即反应热通过列管传给壳程沸腾水,而同时又通过列管中心的冷气管传给进塔的冷气。这样就大大提高转化率,降低循环量和能耗,然而使合成塔的结构更复杂。固定管板列管合成塔虽然可用于大型化,但受管长、设备直径、管板制造所限。在日产超过2000t时,往往需要并联两个。这种塔型是造价最高的一种,也是装卸催化剂较难的一种。随着合成压力增高,塔径加大,管板的厚度也增加。管板处的催化剂属于绝热段,管板下面还有一段逆传热段,也就是进塔气225℃,管外的沸腾水却是248℃,不是将反应热移走而是水给反应气加热。这种合成塔由于列管需用特种不锈钢,因而是造价非常高的一种。
(5)多床内换热式合成塔
这种合成塔由大型氨合成塔发展而来,日前各工程公司的氨合成塔均采用二床(四床)内换热式合成塔,针对乙醇合成的特点采用四床(或五床)内换热式合成塔。各床层是绝热反应,在各床出口将热量移走。这种塔型结构简单,造价低,不需特种合金钢,转化率高,适合于大型或超大型装置,但反应热不能全部直接副产中压蒸汽。典型塔型有Casale的四床卧式内换热合成塔和中国成达公司的四床内换热式合成塔。
合成塔的选用原则一般为:反应能在接近最佳温度曲线条件下进行,床层阻力小,需要消耗的动力低,合成反应的反应热利用率高,操作控制方便,技术易得,装置投资要底等。
综上所述和借鉴大型甲醇合成企业的经验,设计选用固定管板列管合成塔。这种塔内乙醇合成反应接近最佳温度操作线,反应热利用率高,虽然设备复杂、投资高,但是由于这种塔在国内外使用较多,具有丰富的管理和维修经验,技术也较容易得到;外加考虑到设计的是年产10万吨的乙醇合成塔,塔的塔径和管板的厚度不会很大,费用不会很高,所以本设计采用了固定管板列管合成塔。
12