ʵÑéÒ»¡¢Ê±ÓòÁ¬ÐøÐźŵÄÃèÊö¼°¼ÆËã ¿ÎʱÊý£º2
ʵÑéÄ¿µÄ£º
ͨ¹ýÀûÓÃMATLABÓïÑÔÈí¼þʵÏÖÁ¬ÐøÐźŵÄÃèÊöºÍÔËËãÁ·Ï°£¬ÊìÏ¤ÕÆÎÕʵÏÖ»ù±¾Á¬ÐøÐÅʱÓòÔËËãµÄ·½·¨¡£
ʵÑéÄÚÈÝ£º£¨Çë²Î¿¼¿Î±¾µÚ2ÕµÚÁù½Ú£©
£¨1£©¶Ô³£¼ûÁ¬ÐøÊ±¼äÐźŵÄÃèÊö¼°ÔËËãÄÚÈݽøÐÐÑéÖ¤ÐÔ²Ù×÷Á·Ï°£¬ÕÆÎÕÓÃÓÚʵÏÖÕýÏÒÁ¬ÐøÐźš¢·½²¨Ðźš¢½×Ô¾Ðźš¢°×ÔëÉù¡¢¾ØÐÎÂö³åµÈ³£¼ûÐźŵĻù´¡³ÌÐò·½·¨£¬ÊìϤºÍÕÆÎÕ¶ÔÁ¬ÐøÐźŽøÐÐÒÆÎ»¡¢·×ª¡¢³ß¶È±ä»»µÈʱÓòÔËËãµÄ³ÌÐò·½·¨¡£ £¨2£©±à³ÌÍê³ÉÁ·Ï°Ìâ
ÐèÒªÍê³ÉµÄÁ·Ï°Ìâ (д³öÂú×ãʵÏÖÌâĿҪÇóµÄMATLABÓïÑÔ³ÌÐò»òÃüÁî)
1¡¢ ½áºÏºóÎÄ×¼±¸ÄÚÈÝÖÐÀý1¡ª3¡¢ÔÚʱ¼ä?1?t?5ÄÚ£¬±à³ÌʵÏÖÐźÅx(t)??2u(t?1)£¬²¢»æ³ö½á¹ûͼ¡£
2¡¢ ½áºÏÀý1¡ª9£¬ÔÚʱ¼ä0?t?30ÄÚ£¬±à³ÌʵÏÖÐźţ¬²¢»æ³ö½á¹ûͼ¡£
23¡¢ ÔÚʱ¼ä?1?t?3ÄÚ£¬±à³ÌʵÏÖÐźÅx(t)?[u(t)?u(t?2)]cos10t£¬x(t)?e?0.1tsin(t)²¢
3»æ³ö½á¹ûͼ¡£
4¡¢ ½áºÏÀý1¡ª7£¬ÓÃtriplulsº¯ÊýÉú³ÉÓÒͼËùʾµÄÈý½Ç²¨£¬²¢½øÒ»²½×÷ÈçÏÂÐźű任£¬²¢»æ
³ö½á¹ûͼ¡£²Î¿¼¡¾Àý1-11¡¿ 1£©x(?2t?1)
2£©x(3t)?x(3t?2)
5¡¢ ʹÓÃÏÂÃæµÄÐźźϳɹ«Ê½£¬¿´¿´ºÏ³ÉµÄÐźÅÊÇʲôÀàÐÍ£¬²¢·ÖÎöËæ×żÓÈëµÄг²¨Ôö¼Ó£¬
ÐźŲ¨ÐÎÓÐʲô±ä»¯£¿
f(t)?A2A111?[cos?t?cos3?t?cos5?t?cos7?t?...] 2?357²Î¿¼³ÌÐò£º
t=-8:0.01:8;
w=input('·½²¨µÄƵÂÊw='); A=input('·ùÖµA=');
n=input('ÐèÒªµÄг²¨n=');
y=A/2; for k=1:n
y=y+(-1)^(k-1)*cos((2*k-1)*w*t)*2*A/(pi*(2*k-1)); end
plot(t,y),grid
ʵÑ鱨¸æÒªÇó£º
¶ÀÁ¢Íê³ÉʵÑéÁ·Ï°Ì⣬д³öÂú×ãʵÏÖÌâĿҪÇóµÄMATLABÓïÑÔ³ÌÐò»òÃüÁ¸ø³öÏà¶ÔÓ¦µÄ½á¹ûͼ¡£
×¼±¸ÖªÊ¶
Ò»¡¢³£ÓÃÁ¬ÐøÊ±¼äÐźŠ1¡¢ÕýÏÒÐźÅ
A*cos(w0*t+phi) ²úÉúÒ»¸öƵÂÊΪw0£¬ÏàλΪphiµÄÓàÏÒÐźÅx(t)?Acos(?0t??)¡£ A*sin(w0*t+phi) ²úÉúÒ»¸öƵÂÊΪw0£¬ÏàλΪphiµÄÕýÏÒÐźÅx(t)?Asin(?0t??)¡£ [Àý1¡ª1]
ÔÚʱ¼ät?[0,1]·¶Î§ÄÚ²úÉúÒ»¸ö·ù¶ÈΪ2£¬ÆµÂÊΪ4Hz£¬³õÏàλΪ?/6µÄÕýÏÒÐźš£ clear all; clc
%ÕýÏÒÐźŠx(t)=A*sin(w0*t+phi)
A=2; %Ðźŷù¶È f0=4; %ÐÅºÅÆµÂÊ phi=pi/6; %ÐźųõÏàλ w0=2*pi*f0; %ÐÅºÅ½ÇÆµÂÊ t=0:0.01:1; %Á¬ÐøÊ±¼äÀëÉ¢»¯
x=A*sin(w0*t+phi); %Çó³öÕýÏÒÐźÅ
plot(t,x); %»³öÐźŲ¨ÐÎ ylabel('x(t)');xlabel('Time(s)');
title('sinusoidal signal');
ͼ1.1 ÕýÏÒÐźÅ
2¡¢ÖÜÆÚ·½²¨ÐźÅ
square(w0*t) ²úÉú»ù±¾ÆµÂÊΪw0£¨ÖÜÆÚΪT?2?/w0)µÄÖÜÆÚ·½²¨¡£
*100TµÄÖÜÆÚ·½²¨¡£?Ϊһ¸öÖÜÆÚÖÐÐźÅΪÕýµÄʱ¼ä³¤¶È¡£µ±?/t?0.5£¬DUTY=50£¬square(w0*t£¬
square(w0*t£¬DUTY) ²úÉú»ù±¾ÆµÂÊΪw0£¨ÖÜÆÚΪT?2?/w0)¡¢Õ¼¿Õ±ÈDUTY=
?
50)= square(w0*t)¡£
[Àý1¡ª2]
ÔÚʱ¼ät?[0,2.5]·¶Î§ÄÚ²úÉúÒ»¸ö·ù¶ÈΪ1£¬»ùƵΪ3Hz£¬Õ¼¿Õ±ÈΪ20%µÄÖÜÆÚ·½²¨¡£ A=1; % ·ù¶È f0=3;
t=0:0.001:2.5; % Á¬ÐøÊ±¼äÀëÉ¢»¯£¨²úÉúʱ¼äµã£©£¬ w0=2*f0*pi;
duty=20; % Õ¼¿Õ±ÈΪ20% y=A*square(w0*t,duty);
plot(t,y);
axis([0,2.5,-1.5,1.5]);
ylabel('x(t)');xlabel('Time(s)'); title('square wave')
ͼ1.2 ÖÜÆÚ·½²¨ÐźÅ
3¡¢µ¥Î»½×Ô¾ÐźÅu(t)
[Àý1¡ª3]
ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉú½×Ô¾ÐźÅ2u(t)¡£ t=-2:0.02:6; x=2*(t>=0);
stairs(t,x);-1
axis([-2,6,0,2.5]);
ylabel('x(t)'); xlabel('Time(s)'); title('step signal');
ͼ1.3 ½×Ô¾ÐźÅ
4¡¢µ¥Î»³å¼¤ÐźÅ?(t)
[Àý1¡ª4]
ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉúÒ»¸ö³å¼¤ÐźÅ2?(t?2)¡£
t=-2:0.02:6; x=2*((t-2)==0);
stairs(t,x);
axis([-2,6,0,2.5]);
ylabel('x(t)'); xlabel('Time(s)'); title('impulse signal');
ͼ1.4 ³å¼¤ÐźÅ
5¡¢¾ØÐÎÂö³åÐźÅ
rectpulse(t)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪ1¡¢¹ØÓÚt=0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ rectpulse(t, w)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪw¡¢¹ØÓÚt=0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ rectpulse(t-t0, w)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪw¡¢¹ØÓÚt=t0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ [Àý1¡ª5]
ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉúÒ»¸ö¸ß¶ÈΪ1¡¢¿í¶ÈΪ3¡¢ÑÓʱ2ÃëµÄ¾ØÐÎÂö³åÐźš£ t=-2:0.02:6;
y=rectpuls(t-2,3);%¶Ô³ÆÖÐÐÄÔÚt=2´¦
plot(t,y);
axis([-2,6.5,0,1.5]);