ʵÑéÒ»ÐźŵÄʱÓòʵÏÖÓëÔËËã ÏÂÔØ±¾ÎÄ

ʵÑéÒ»¡¢Ê±ÓòÁ¬ÐøÐźŵÄÃèÊö¼°¼ÆËã ¿ÎʱÊý£º2

ʵÑéÄ¿µÄ£º

ͨ¹ýÀûÓÃMATLABÓïÑÔÈí¼þʵÏÖÁ¬ÐøÐźŵÄÃèÊöºÍÔËËãÁ·Ï°£¬ÊìÏ¤ÕÆÎÕʵÏÖ»ù±¾Á¬ÐøÐÅʱÓòÔËËãµÄ·½·¨¡£

ʵÑéÄÚÈÝ£º£¨Çë²Î¿¼¿Î±¾µÚ2ÕµÚÁù½Ú£©

£¨1£©¶Ô³£¼ûÁ¬ÐøÊ±¼äÐźŵÄÃèÊö¼°ÔËËãÄÚÈݽøÐÐÑéÖ¤ÐÔ²Ù×÷Á·Ï°£¬ÕÆÎÕÓÃÓÚʵÏÖÕýÏÒÁ¬ÐøÐźš¢·½²¨Ðźš¢½×Ô¾Ðźš¢°×ÔëÉù¡¢¾ØÐÎÂö³åµÈ³£¼ûÐźŵĻù´¡³ÌÐò·½·¨£¬ÊìϤºÍÕÆÎÕ¶ÔÁ¬ÐøÐźŽøÐÐÒÆÎ»¡¢·­×ª¡¢³ß¶È±ä»»µÈʱÓòÔËËãµÄ³ÌÐò·½·¨¡£ £¨2£©±à³ÌÍê³ÉÁ·Ï°Ìâ

ÐèÒªÍê³ÉµÄÁ·Ï°Ìâ (д³öÂú×ãʵÏÖÌâĿҪÇóµÄMATLABÓïÑÔ³ÌÐò»òÃüÁî)

1¡¢ ½áºÏºóÎÄ×¼±¸ÄÚÈÝÖÐÀý1¡ª3¡¢ÔÚʱ¼ä?1?t?5ÄÚ£¬±à³ÌʵÏÖÐźÅx(t)??2u(t?1)£¬²¢»æ³ö½á¹ûͼ¡£

2¡¢ ½áºÏÀý1¡ª9£¬ÔÚʱ¼ä0?t?30ÄÚ£¬±à³ÌʵÏÖÐźţ¬²¢»æ³ö½á¹ûͼ¡£

23¡¢ ÔÚʱ¼ä?1?t?3ÄÚ£¬±à³ÌʵÏÖÐźÅx(t)?[u(t)?u(t?2)]cos10t£¬x(t)?e?0.1tsin(t)²¢

3»æ³ö½á¹ûͼ¡£

4¡¢ ½áºÏÀý1¡ª7£¬ÓÃtriplulsº¯ÊýÉú³ÉÓÒͼËùʾµÄÈý½Ç²¨£¬²¢½øÒ»²½×÷ÈçÏÂÐźű任£¬²¢»æ

³ö½á¹ûͼ¡£²Î¿¼¡¾Àý1-11¡¿ 1£©x(?2t?1)

2£©x(3t)?x(3t?2)

5¡¢ ʹÓÃÏÂÃæµÄÐźźϳɹ«Ê½£¬¿´¿´ºÏ³ÉµÄÐźÅÊÇʲôÀàÐÍ£¬²¢·ÖÎöËæ×żÓÈëµÄг²¨Ôö¼Ó£¬

ÐźŲ¨ÐÎÓÐʲô±ä»¯£¿

f(t)?A2A111?[cos?t?cos3?t?cos5?t?cos7?t?...] 2?357²Î¿¼³ÌÐò£º

t=-8:0.01:8;

w=input('·½²¨µÄƵÂÊw='); A=input('·ùÖµA=');

n=input('ÐèÒªµÄг²¨n=');

y=A/2; for k=1:n

y=y+(-1)^(k-1)*cos((2*k-1)*w*t)*2*A/(pi*(2*k-1)); end

plot(t,y),grid

ʵÑ鱨¸æÒªÇó£º

¶ÀÁ¢Íê³ÉʵÑéÁ·Ï°Ì⣬д³öÂú×ãʵÏÖÌâĿҪÇóµÄMATLABÓïÑÔ³ÌÐò»òÃüÁ¸ø³öÏà¶ÔÓ¦µÄ½á¹ûͼ¡£

×¼±¸ÖªÊ¶

Ò»¡¢³£ÓÃÁ¬ÐøÊ±¼äÐźŠ1¡¢ÕýÏÒÐźÅ

A*cos(w0*t+phi) ²úÉúÒ»¸öƵÂÊΪw0£¬ÏàλΪphiµÄÓàÏÒÐźÅx(t)?Acos(?0t??)¡£ A*sin(w0*t+phi) ²úÉúÒ»¸öƵÂÊΪw0£¬ÏàλΪphiµÄÕýÏÒÐźÅx(t)?Asin(?0t??)¡£ [Àý1¡ª1]

ÔÚʱ¼ät?[0,1]·¶Î§ÄÚ²úÉúÒ»¸ö·ù¶ÈΪ2£¬ÆµÂÊΪ4Hz£¬³õÏàλΪ?/6µÄÕýÏÒÐźš£ clear all; clc

%ÕýÏÒÐźŠx(t)=A*sin(w0*t+phi)

A=2; %Ðźŷù¶È f0=4; %ÐÅºÅÆµÂÊ phi=pi/6; %ÐźųõÏàλ w0=2*pi*f0; %ÐÅºÅ½ÇÆµÂÊ t=0:0.01:1; %Á¬ÐøÊ±¼äÀëÉ¢»¯

x=A*sin(w0*t+phi); %Çó³öÕýÏÒÐźÅ

plot(t,x); %»­³öÐźŲ¨ÐÎ ylabel('x(t)');xlabel('Time(s)');

title('sinusoidal signal');

ͼ1.1 ÕýÏÒÐźÅ

2¡¢ÖÜÆÚ·½²¨ÐźÅ

square(w0*t) ²úÉú»ù±¾ÆµÂÊΪw0£¨ÖÜÆÚΪT?2?/w0)µÄÖÜÆÚ·½²¨¡£

*100TµÄÖÜÆÚ·½²¨¡£?Ϊһ¸öÖÜÆÚÖÐÐźÅΪÕýµÄʱ¼ä³¤¶È¡£µ±?/t?0.5£¬DUTY=50£¬square(w0*t£¬

square(w0*t£¬DUTY) ²úÉú»ù±¾ÆµÂÊΪw0£¨ÖÜÆÚΪT?2?/w0)¡¢Õ¼¿Õ±ÈDUTY=

?

50)= square(w0*t)¡£

[Àý1¡ª2]

ÔÚʱ¼ät?[0,2.5]·¶Î§ÄÚ²úÉúÒ»¸ö·ù¶ÈΪ1£¬»ùƵΪ3Hz£¬Õ¼¿Õ±ÈΪ20%µÄÖÜÆÚ·½²¨¡£ A=1; % ·ù¶È f0=3;

t=0:0.001:2.5; % Á¬ÐøÊ±¼äÀëÉ¢»¯£¨²úÉúʱ¼äµã£©£¬ w0=2*f0*pi;

duty=20; % Õ¼¿Õ±ÈΪ20% y=A*square(w0*t,duty);

plot(t,y);

axis([0,2.5,-1.5,1.5]);

ylabel('x(t)');xlabel('Time(s)'); title('square wave')

ͼ1.2 ÖÜÆÚ·½²¨ÐźÅ

3¡¢µ¥Î»½×Ô¾ÐźÅu(t)

[Àý1¡ª3]

ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉú½×Ô¾ÐźÅ2u(t)¡£ t=-2:0.02:6; x=2*(t>=0);

stairs(t,x);-1

axis([-2,6,0,2.5]);

ylabel('x(t)'); xlabel('Time(s)'); title('step signal');

ͼ1.3 ½×Ô¾ÐźÅ

4¡¢µ¥Î»³å¼¤ÐźÅ?(t)

[Àý1¡ª4]

ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉúÒ»¸ö³å¼¤ÐźÅ2?(t?2)¡£

t=-2:0.02:6; x=2*((t-2)==0);

stairs(t,x);

axis([-2,6,0,2.5]);

ylabel('x(t)'); xlabel('Time(s)'); title('impulse signal');

ͼ1.4 ³å¼¤ÐźÅ

5¡¢¾ØÐÎÂö³åÐźÅ

rectpulse(t)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪ1¡¢¹ØÓÚt=0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ rectpulse(t, w)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪw¡¢¹ØÓÚt=0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ rectpulse(t-t0, w)²úÉú¸ß¶ÈΪ1¡¢¿í¶ÈΪw¡¢¹ØÓÚt=t0¶Ô³ÆµÄ¾ØÐÎÂö³åÐźš£ [Àý1¡ª5]

ÔÚʱ¼ät?[?2,6]·¶Î§ÄÚ²úÉúÒ»¸ö¸ß¶ÈΪ1¡¢¿í¶ÈΪ3¡¢ÑÓʱ2ÃëµÄ¾ØÐÎÂö³åÐźš£ t=-2:0.02:6;

y=rectpuls(t-2,3);%¶Ô³ÆÖÐÐÄÔÚt=2´¦

plot(t,y);

axis([-2,6.5,0,1.5]);