人教版新课标五年级下册数学全册教案 下载本文

( )。 三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。 通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。 小结:1升(L)=1立方分米(dm3 ) ②1升 = 1立方分米 1000毫升 1000立方厘米 1毫升(mL)=1立方厘米( cm3 ) 练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L 1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯? (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升 答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少? 4、提高题:p55、16 五、作业:

单元复习 第一课时: 复习目标:

1、使学生对长正方体的有关概念掌握得更加牢固。 2、进一步掌握长正方体的表面积和体积的计算。 3、体积单位的进率。 复习重点:

长正方体的表面积和体积的计算。体积单位的进率。 复习用具:长正方体的学具。 复习过程:

一、复习单元的主要内容:(板书:长方体和正方体) 问:看到课题你能想到到哪些知识? 1、特征及关系:

正方体是特殊的长方体。(集合图)

2、表面积:怎样求长正方体的表面积?(说出公式) 3、体积和容积:

(1)、体积单位:立方米、立方分米、立方厘米。

(2)、容积单位:一般用体积单位,计量液体时用:升、毫升。 (3)、体积和容积的计算:(说出公式) 二、练习: 1、填空:

(1)表面积和体积的意义不同,表面积是物体 的大小,体积是物体所占 的大小。

(2)、表面积和体积所用的计量单位不同,计量表面积用 单位。常用的单位有 、

、 ;相邻的两个面积单位间的进率是 。计量物体体积用 单位,

常用的体积单位有 、 、 ;相邻的体积单位间的进率是 。 (3)、表面积和体积的计算方法不同。计算正方体的表面积是 ;计算正方体的体积是 或 。 计算长方体的表面是 ;计算长方体的体积是 或 。

(4)、 一个正方体,棱长是8分米,这个正方体的棱场之和是 ;表面积是 ;体积 。

(5)、一个长方体,长2米,宽5分米,高0.4分米。这个长方体的表面积是 ;体积是 。

(6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。这根木材的长是 ,放在地上占地面积最大是 。 2、判断:

(1)、长方体中可以有两个相同的面是正方形。 ( ) (2)、长方体中相对的4条棱长度相等。 ( ) (3)、正方体的6个面是完全一样的正方形。 ( ) (4)、长方体相邻的两个面一定不完全相同。 ( )

(5)、用同样大小的小正方体拼成一个大正方体,最少要用8个这样的正方体。( )

(6)、长方体中有四个面是完全一样的长方形。 ( )