(完整word版)相交线与平行线专题总结(含答案)(2),推荐文档 下载本文

2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.

一:

参考答案

1.邻补角 2. 对顶角,对顶角相等 3.垂直 有且只有 垂线段最短 4.点

到直线的距离 5.同位角 内错角 同旁内角 6.平行 相交 平行

7.平行 这两直线互相平行 8.同位角相等 两直线平行; 内错角相等 两

3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?

4.证明:五边形内角和等于540°.

5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.

直线平行; 同旁内角互补 两直线平行. 9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD⊥OE 理由略 17. 1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等 两直线平行) ⑵∵a∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°. 21.QAD?BC,FE?BC??EFB??ADB?90

o?EF//AD??2??3 QDG//BA,??3??1 ??1??2. 22. ∠A=

∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2 ∴∠DGF=∠2 ∴DB∥EC(同位角相等,两直线平行) ∴∠DBA=∠C(两直线平行,同位角相等) 又

∵∠C=∠D ∴∠DBA=∠D ∴DF∥AC(内错角相等,两直线平行)∴∠A

=∠F(两直线平行,内错角相等).

- 5 -

三 例1 如图 1-18,直线a∥b,直线 AB

交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90°

分析 由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=

说明 做完此题不妨想一想这个问题的“反问题”是否成立, 即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?”

过C点作直线 l,使 l∥a(或 b)即可通过平行线的性质实现等角转移.

由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.

例2 如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.

证 过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以∠1+∠2=180°(同侧内角互补). 因为AC平分∠1,BC平分∠2,所以

又∠3=∠

分析 本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即∠A1+∠A2=∠B1. ①

猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.

CAE,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF

- 6 -

推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况. (2)这个问题也可以将条件与结论对换一下,变成一个新问题.

证 过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所

示)因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(内错角相等),所以∠B1=∠1+∠2=∠A1+∠A2,即 ∠A1-∠B1+∠A2=0.

问题2 如图1-25所示.若

说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有

∠A1+∠A2+∠A3=∠B1+∠B2.

(即那些向右凸出的角的和=向左凸的角的和)即

∠A1-∠B1+∠A2-∠B2+∠A3=0.

这两个问题请同学加以思考.

进一步可以推广为∠A1-∠B1+∠A2-∠B2+…-∠Bn-1+∠An=0.

例3 如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,

这时,连结A1,An之间的折线段共有n段A1B1,B1A2,…,Bn-1An(当然,仍要保持 AA1∥BAn).

∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn-1,问AA1与BAn是否平行?

问题1 如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?

- 7 -

分析 平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决, 下面方法是最简单的一种.

求∠C.

分析 利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标. 解 过F到 FG∥CB,交 AB于G,则

∠C=∠AFG(同位角相等), ∠2=∠BFG(内错角相等).

因为 AE∥BD,所以∠1=∠BFA(内错角相等),

所以∠C=∠AFG=∠BFA-∠BFG=∠1-∠2=3∠2-∠2=2∠2=50°. 说明(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧.(2)在学过“三角形内角和”知识后,可有以下较为简便的解法:∠1=∠DFC=∠C+∠2,即∠C=∠1-∠2=2∠2=50°. 例4 求证:三角形内角之和等于180°.

证 如图1-27所示,在△ABC中,过A引l∥BC,则

∠B=∠1,∠C=∠2(内错角相等).

显然 ∠1+∠BAC+∠2=平角, 所以 ∠A+∠B+∠C=180°.

说明 事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法.

例5 求证:四边形内角和等于360°.

分析 应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程.

- 8 -