(完整)初一数学追及问题和相遇问题列方程的技巧 下载本文

这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:

船速=(顺水速度+逆水速度)÷2 (7) 水速=(顺水速度-逆水速度)÷2 (8)

*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)

解:此船的顺水速度是:

25÷5=5(千米/小时)

因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)

综合算式:

25÷5-1=4(千米/小时)

答:此船在静水中每小时行4

千米。

*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度)

解:此船在逆水中的速度是:

12÷4=3(千米/小时)

因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:

4-3=1(千米/小时)

答:水流速度是每小时1千米。

*例3 一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)

解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:

(20+12)÷2=16(千米/小时)

因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:

(20-12)÷2=4(千米/小时)

答略。

*例4 某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

18-2=16(千米/小时)

甲乙两地的路程是:

16×15=240(千米)

此船顺水航行的速度是:

18+2=20(千米/小时)

此船从乙地回到甲地需要的时间是:

240÷20=12(小时)

答略。

*例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)

解:此船顺水的速度是:

15+3=18(千米/小时)

甲乙两港之间的路程是:

18×8=144(千米)

此船逆水航行的速度是:

15-3=12(千米/小时)

此船从乙港返回甲港需要的时间是:

144÷12=12(小时)

综合算式:

(15+3)×8÷(15-3)

=144÷12 =12(小时) 答略。

*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)

解:顺水而行的时间是:

144÷(20+4)=6(小时)

逆水而行的时间是:

144÷(20-4)=9(小时)

答略。

*例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度)

解:此船顺流而下的速度是:

260÷6.5=40(千米/小时)

此船在静水中的速度是:

40-8=32(千米/小时)

此船沿岸边逆水而行的速度是:

32-6=26(千米/小时)

此船沿岸边返回原地需要的时间是:

260÷26=10(小时)

综合算式:

260÷(260÷6.5-8-6)

=260÷(40-8-6)

=260÷26 =10(小时) 答略。

*例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

120000÷24=5000(米/小时)

此船在静水中航行的速度是:

5000+2500=7500(米/小时)

此船顺水航行的速度是:

7500+2500=10000(米/小时)

顺水航行150千米需要的时间是:

150000÷10000=15(小时)

综合算式:

150000÷(120000÷24+2500×2)

=150000÷(5000+5000) =150000÷10000