(完整)初一数学追及问题和相遇问题列方程的技巧 下载本文

50-(980÷10-50)

=50-(98-50) =50-48 =2(千米) 答略。

例4 甲、乙两地相距486千米,快车与慢车同时从甲、乙两地相对开出,经过6小时相遇。已知快车与慢车的速度比是5∶4。求快车和慢车每小时各行多少千米?(适于六年级程度)

两车的速度和是:

486÷6=81(千米/小时)

快车每小时行:

慢车每小时行:

答略。

例5 两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。一辆汽车每小时行37千米。另一辆汽车每小时行多少千米?(适于五年级程度)

解:如果两地间的距离减少120千米,4.5小时两车正好相遇。也就是两车4.5小时行465-120=345千米,345千米除以4.5小时,可以求出两车速度之和。从速度之和减去一辆车的速度,得到另一辆车的速度。

答略。

例6 甲、乙两人从相距40千米的两地相向而行。甲步行,每小时走5千米,先出发0.8小时。乙骑自行车,骑2小时后,两人在某地相遇。乙骑自行车每小时行多少千米?(适于五年级程度)

解:两人相遇时,甲共走:

0.8+2=2.8(小时)

甲走的路程是:

5×2.8=14(千米)

乙在2小时内行的路程是:

40-14=26(千米)

所以,乙每小时行:

26÷2=13(千米)

综合算式:

[40-5×(0.8+2)]÷2

=[40-5×2.8]÷2 =[40-14]÷2 =26÷2 =13(千米) 答略。

例7 甲、乙二人从相距50千米的两地相对而行。甲先出发,每小时步行5千米。1小时后乙骑自行车出发,骑了2小时,两人相距11千米。乙每小时行驶多少千米?(适于五年级程度)

解:从相距的50千米中,去掉甲在1小时内先走的5千米,又去掉相隔的11千米,便得到:

50-5-11=34(千米)

这时,原题就改变成“两地相隔34千米,甲、乙二人分别从两地同时相对而行。甲步行,乙骑自行车,甲每小时走5千米。经过2小时两人相遇。乙每小时行多少千米?”

由此可知,二人的速度和是:

34÷2=17(千米/小时)

乙每小时行驶的路程是:

17-5=12(千米)

综合算式:

(50-5-11)÷2-5

=34÷2-5 =17-5 =12(千米) 答略。

(二)追及问题

追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。

根据速度差、距离差和追及时间三者之间的关系,常用下面的公式: 距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间

速度差=快速-慢速

解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

*例1 甲、乙二人在同一条路上前后相距9千米。他们同时向同一个方向前进。甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车追赶甲。几小时后乙能追上甲?(适于高年级程度)

解:求乙几小时追上甲,先求乙每小时能追上甲的路程,是:

10-5=5(千米)

再看,相差的路程9千米中含有多少个5千米,即得到乙几小时追上甲。

9÷5=1.8(小时)

综合算式:

9÷(10-5)

=9÷5 =1.8(小时) 答略。

*例2 甲、乙二人在相距6千米的两地,同时同向出发。乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。甲几小时才能追上乙?(适于高年级程度)

解:甲每小时行:

5×1.2=6(千米)

甲每小时能追上乙:

6-5=1(千米)

相差的路程6千米中,含有多少个1千米,甲就用几小时追上乙。

6÷1=6(小时)

答:甲6小时才能追上乙。