(完整)初一数学追及问题和相遇问题列方程的技巧 下载本文

=480-410 =70(千米)

答:5小时后两列火车相距70千米。

例3 甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。从开始走到第二次相遇,共用了6小时。A、B两地相距多少千米?(适于五年级程度) 解:从开始走到第一次相遇,两人走的路程是一个AB之长;而到第二次相遇,两人走

的路程总共就是3个AB之长(图35-1),这三个AB之长是:

(5+4)×6=54(千米)

所以,A、B两地相距的路程是:

54÷3=18(千米)

答略。

例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,

第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)

解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。

(60+55)×[20÷(60-55)]

=115×[20÷5] =460(千米) 答略。

*例5 甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。求A、B两地之间的距离。(适于五年级程度)

解:由题意可知,当二人相遇时,甲比乙多走了1.5×2千米(图35-2),甲比乙每小时多行(6-5)千米。由路程差与速度差,可求出相遇时间,进而求出A、B两地之间的距离。

(6+5)×[1.5×2÷(6-5)]

=11×[1.5×2÷1] =11×3 =33(千米) 答略。

由两车“在离中点2千米处相遇”可知,甲车比乙车少行:

2×2=4(千米)

所以,乙车行的路程是:

甲车行的路程是:

A、B两站间的距离是:

24+20=44(千米)

答略。

同普通客车相遇。甲、乙两城间相距多少千米?(适于六年级程度)

快车从乙城开出,普通客车与快车相对而行。已知普通客车每小时行60千米,快车每小时行80千米,可以求出两车速度之和。又已知两车相遇时间,可以按“速度之和×相遇时间”,求出两车相对而行的总行程。普通客车已行驶

普通客车与快车速度之和是:

60+80=140(千米/小时)

两车相对而行的总路程是:

140×4=560(千米)

两车所行的总路程占全程的比率是:

甲、乙两城之间相距为:

综合算式:

答略。 2)求各行多少

例1 两地相距37.5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米。相遇时甲、乙二人各走了多少千米?(适于五年级程度)

解:到甲、乙二人相遇时所用的时间是:

37.5÷(3.5+4)=5(小时)

甲行的路程是:

3.5×5=17.5(千米)

乙行的路程是:

4×5=20(千米)

答略。

例2 甲、乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。相遇后他们又都走了1小时。两人各走了多少千米?(适于五年级程度)

解:到甲、乙二人相遇所用的时间是:

40÷(4+6)=4(小时)

由于他们又都走了1小时,因此两人都走了:

4+1=5(小时)

甲走的路程是:

4×5=20(千米)