3.6 按键控制电路
在本次设计之中我们针对本电路一共设置了四个按键,一个设置键、一个加键、一个减键、一个紧急报警键,当我们在生活中遇到紧急的情况的时候,便可以迅速按下按键之中的紧急报警键,在这个时候蜂鸣器便会进行报警。按键控制电路的电路图如下图所示:
图9 消音按键连接电路图
3.7 电源模块
因为在本次针对烟雾报警系统之中对于供电系统我们采用的事电池供电,因此我们比较了两种供电系统对本系统进行供电,它们都有各自的优缺点。
方案1:
方案一中我们使用5V蓄电池为我们所设计的系统进行供电。通常情况下蓄电池不仅具有很强大的电流驱动能力而且也具有很平稳的的电压输出的能力。但是蓄电池的缺点及时体积相对于其他供电系统太过于庞大,在小环境的报警器中使用起来相当的不方便。 方案2:
方案二中我们采用三节1.5 V的干电池互相串联那么便得到了共4.5V的干电池做电源,我们通过实验验证该单片机系统在工作的时候,各种器件所需要的电压都能够满足该单片机系统的需求,而且电池更换起来也极为方便。
综上所述,我们针对单片机系统的供电系统采用第二种方案。
图10 电源接口电路
3.8 温度传感器(DS18B20)电路 3.8.1 DSl8B20简介
DSl8B20温度传感器是全球著名的DALLAS半导体公司生产并推出的一款新型的温度传感器,该温度传感器是继DSl820温度传感器之后最新推出一款新型的
智能温度传感器。DSl8B20温度传感器相对于传统的热敏电阻有很多的优点,这种温度传感器不仅可以直接读出被测量的温度,而且也能够根据系统的需要从而通过编程可以达到数字直读方式。而且我们可以从DSl8B20温度传感器读出或者写入信息仅仅可以用一根口线用来读写,温度变换功率来源于数据总线,而且总线也可以向DSl8B20温度传感器进行供电,并不需要加入其他的电源。所以我们在应用DSl8B20传感器的过程之中不仅可以让单片机系统中的结构更加趋向于简单,而且在这种温度传感器的可靠性也非常的高。本文设计不仅向我们介绍了基于DS18B20温度传感器的温度测量中所应用的单片机控制系统的构成、不且也向我们系统的介绍了设计的方案和所用到到的程序设计的过程。DS18B20温度传感器进行多点温度测量的单片机系统的控制的核心采用AT89C52单片机进行控制的,并且以DS18B20作为被控制的对象,单片机系统中熟知的显示我们采用数码管进行显示,并且在单片机系统的设计过程之中我们也用到了C语言来实现单片机系统所要求的各种功能。DSl8B20温度传感器我们用到了3脚PR35封装和8脚SOIC封装.
如下图所示我们可以看出 DS18B20温度传感器中的各个管脚的排列:
图11 DS18B20的管脚
DS18B20温度传感器的各个引脚说明如下: GND 引脚可以表示为接地引脚;
DQ 引脚可以表示为数据输入/输出端口引脚; VDD 引脚可以表示为所接电源的引脚; NC引脚可以表示为空脚;
DSl8B20的内部RAM包括两个RAM,其中一个表示为高速暂存RAM,另一个为可电擦除的EEPRAM。可电擦除的存储器通常情况下我们用来存储TH和TL的值。通常情况下我们首先会将数据先写入RAM,其次我们会通过校验并且将数据信号传给EEPRAM。而配置寄存器为高速暂存器中的第5个字节,配置寄存器之中的内容通常情况下用来确定数字转换的分辨率,DSl8B20 温度传感器在正常工作的时候通常情况下会按照这个配置寄存器中的分辨率将温度变为与其相对应的数值。低5位通常情况下一直都表示为1,TM通常情况下用来表示测试模式位,通常情况下TM用来进行设置DSl8B20温度传感器应当在工作模式还是应当在测试模式。如下面表格中的内容所示。DSl8B20温度传感器在刚刚出厂的时候该位一般情况下会被设置为0,并不需要用户去进行改动。
表1 字节各位的定义
TM R1 R0 1 1 1 1 1 由下表中的内容我们可以看出,我们所设定的分辨率与单片机系统中的温度数据转换时间成正比关系。所以当我们在实际应用的过程之中一定要在考虑分辨率和转换时间并进行权衡。高速暂存RAM之中不仅包括配置寄存器,而且还包括另外八个字节组成,它的分配从下表我们可以看出。通过下表我们可以看出TH和TL值第三,第四节,第六到第八字节,表现为全逻辑1;第九字节读出的数值就是前面的八个字节的RC码,通常情况下可以用来保证通信的正确性。
表2 数据分辨率和转换时间
R1 R0 分辨率 温度最大转换时间/ms 0 0 1 1 0 1 0 1 9 10 11 12 93.75 187.5 275.00 750.00 通常情况之下当DSl8B20温度传感器收到温度转换的信号之后,便会启动转换程序,如下表中的内容所示。转换完成后的温度值就以16位带符号扩展到二