中学自主招生数学试卷
一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.) 1.(3分)﹣3的相反数是( ) A.3
B.﹣3
C.±3
D.
2.(3分)下列计算正确的是( ) A.2a+3b=5ab C.ab÷2ab=a
2
2
B.=±6
2
3
36
D.(2ab)=8ab
3.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是( )
A. B. C. D.
4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是( ) A.平均数
B.众数
C.中位数
D.方差
5.(3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( )
A.20°
B.25°
C.40°
D.50°
6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则( )
=
A.
B.2
C.
3
D.
2
7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y+y﹣6=0.则﹣y的值为( ) A.0
B.
C.1
D.
8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是( )
A.x>2 C.﹣1<x<4
B.0<x<4
D.x<﹣1 或 x>4
二、填空题(本大题共10小题,每小题3分,共30分.)
9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为 . 10.(3分)若
有意义,则x的取值范围是 .
2
11.(3分)分解因式:mx﹣4m= .
12.(3分)若方程x+kx+9=0有两个相等的实数根,则k= .
13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为 cm. 14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是 .
2
2
15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为 .
16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 .
17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn= .
2
18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是 .
三、解答题(本大题有10小题,共96分.)
19.(8分)(1)计算:|﹣3|﹣tan30°+2018﹣();
0﹣1
(2)化简:(1+a)(1﹣a)+a(a﹣2).
20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生; (2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数. 21.(8分)若关于x的分式方程
=1的解是正数,求m的取值范围.
22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.
(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是 .
23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)