自动控制原理 第二章习题答案 下载本文

2-1试建立如图 所示电路的动态微分方程。

解:

(a) 输入ui 输出uo u1 C i2 i1=i-i2 u1=ui-uo + + uo u1 ui-uo i1 R1 ui R2 i uo i= i1= R1 = R1 R2 - - du1 d(ui-uo) ui-uo uo d(ui-uo) i2=C dt =C - dt R1 = R2 C dt du du R2(ui-uo )=R1u0-CR1R2( dt i- dt o) duo du CR1R2 dt +R1uo+R2u0=CR1R2 dt i+R2ui

解:(b) + ui (ui-u1) i=i1+i2 i= R1 i R1 u1 L C i1 Ri2 2 + uo - uo du1 ui-u1 uo du1 i1= R2 i2=C dt R1 = R2 +C dt duo L duo L u1-uo= u1=uo+ R2 dt R2 dt ui uo L duo uo duo CL d2uo - - dt2 R1 R1 R1R2 dt = R2 +C dt + R2 ui CL d2uo duo 1 1 L + R)uo ) +( R1 R1R2R1 = R2 dt2 +(C+ dt2

2-2 求下列函数的拉氏变换。 (1)f(t)?sin4t?cos4t (2)f(t)?t?e (3)f(t)?1?te

?t34t-

(4)f(t)?(t?1)2e2t 解:

(1) f(t)=sin4t+cos4tsωL[sinωt]= L[cosωt]=2解:22ω+s2ω+s4ss+4L[sin4t+cos4t]= s2+16+s2+16=s2+16(2) f(t)=t3+e4t解:3!+ 1= 6s+24+s4L[t3+e4t]= s4(s+4)s4s-4

(3) f(t)=tneatn!解:L[tneat]=(s-a)n+1(4) f(t)=(t-1)2e2t解:L[(t-1)2e2t]=e-(s-2)23(s-2)

2-3求下列函数的拉氏反变换。 (1)F(s)?s?1s (2) F(s)?

(s?2)(s?3)(s?1)2(s?2)s?22s2?5s?1 (3) F(s)? (4) F(s)?22(s?4s?3)(s?2)s(s?1)s+1(1) F(s)=(s+2)(s+3)s+1解:A1=(s+2)(s+2)(s+3)s=-2=-1s+1A2=(s+3)(s+2)(s+3)s=-3=221F(s)= s+3-s+2f(t)=2e-3t-e-2t

A2A3A1s(2) F(s)=(s+1)+ 2(s+2)= 2s+2(s+1)s+1+ 解:A1=(s+1)2(s+1)2s(s+2)s=-1=-1dsA2= ds[s+2]s=-1=2A3=(s+2)(s+1)2s(s+2)s=-2=-2F(s)=-2e-2t-te-t+2e-t

2-5s+1As+A12A3(3) F(s)=2s= 22ss(s+1)s+1+ 解:F(s)(s2+1)s=+j=A1s+A2s=+j2s2-5s+1=As+A2 s s=j1s=j-5j-1=-A1+jA2 1s-5F(s)= s+s2+1+s2+1A1=1A2=-5A3=F(s)ss=0=1s+2(4) F(s)=s(s+1)2(s+3)A1A2A3A4解:=(s+1)2+s+1+s+s+32A= 1A1= -1A2= -3A= 4123324(s+2)d[s(s+3) ][s(s+3)-(s+2)(2s+3)] A2= dss=-1 s=-1= [s(s+3)]2

-t-t3e-t+2+1e-3tf(t)=2e-4312

f(t)?1?cost?5sint

d2y(t)dy(t)?5?6y(t)?6 2-4 解下列微分方程 2dtdt?(0)?2 初始条件:y(0)?y6解:s2Y(s)-sy(0)-y'(0)+5sY(s)-5y(0)+6Y(s)= s6s2Y(s)-2s-2+5sY(s)-10+6Y(s)= sA1A2A36+2s2+12s= Y(s)=s(s2+5s+6)s+ s+2+ s+3A1=1A2=5 A3=-4y(t)=1+5e-2t-4e-3t

2-5试画题图所示电路的动态结构图,c并求传递函数。i1(1)解:+R1Ur(s)Cs_CsI1(s)R1I2(s)1++I(s)R2R2Uc(s)ur-i2+iR2uc-Uc(s)1+sC)R( 2R1R2+R1R2sCUr(s)Uc(s)=1+sC)R=R1+R2+R1R2sC1+(R21(2)解:+-u1R1CL

L1=-R2 /LsL2=-/LCs2L3=-1/sCR1L1 L3=R2/LCR1s2Ur(s)_R1urii1i2R2+uc-Δ1=1CsP1=R2/LCR1s2Uc(s)U(s)L1I(s)I2(s)U1(s)-cI(s)1111RR2U1(s)L3I1(s)-L2Ls2

2-6用运算放大器组成的有源电网络如图所示,试采用复数阻抗法写出它们的 传递函数。

R2Ur(s)=Uc(s)R1CLs2+(R1R2C+L)s+R1+R2

解:电路等效为:

R2R3CuoUI=-R1UO1R2·SC+1R3R2+SCUO=-R2+R3R2SC+1

uiR1-∞++△

R2R3=-( + )R1(R2SC+1)R1=-R21( +R)R1(R2SC+1)3 R2RR2SC+1+3=-R1R1+R3+R2R3CSR1(R2SC+1)=-

2-8设有一个初始条件为零的系统,当其输入端作用一个脉冲函数δ(t)时,它的输出响应c(t)

如图所示。试求系统的传递函数。

解:δ(t)c(t)K0T

t

-TSKt-K(t-T)K(1-e )c(t)=TC(s)=2TTsC(s)=G(s)

2-9 若某系统在阶跃输入作用r(t)=1(t)时,系统在零初始条件下的输出响应为:

c(t)?1?e?2t?e?t,试求系统的传递函数。

解:(s2+4s+2)G(s)=C(s)/R(s)=(s+1)(s+2)2+4s+2)(s2-1脉冲响应:C(s)=(s+1)(s+2)=1+s+2s+1c(t)=δ(t)+2e-2t-e-t

2-10 已知系统的微分方程组的拉氏变换式,试画出系统的动态结构图并求传递函数

C(s)。 R(s)X1(s)?R(s)G1(s)?G1(s)[G7(s)?G8(s)]C(s)

X2(s)?G2(s)[X1(s)?G6(s)X3(s)]

X3(s)?[X2(s)?C(s)G5(s)]G3(s) C(s)?G4(s)X3(s)

解:X1(s)=R(s)G1(s)-G1(s)[G7(s)-G8(s)]C(s)={R(s)-C(s)[G7(s)-G8(s)]}G1(s)X2(s)=G2(s)[X1(s)-G6(s)X3(s)]X3(s)=G3(s)[X2(s)-C(s)G5(s)]-G1-X1(s)R(s)G6(s)X3(s)G2X2(s)G6-G3X3(s)G4C(s)C(s)[G7(s)-G8(s)]C(s)G5(s)-G5G7G8 R(s)-R(s)G1--G1G2G3G4C(s)C(s)G4G3G1+G32G2G6 +G-3G4G5G7G8G1G2G3G4-G6G7-G8G5C(s)R(s)=1+G3G2G6 +G3G4G5+G1G2G3G4(G7 -G8)R(s)-G1G2-G3G4C(s)1+G3G2G6G5G7-G8

2-11 已知控制系统结构图如图所示,试分别用结构图等效变换和梅逊公式求系统传递函数

C(s)。 R(s)

解:(a)

R(s)求系统的G1(s)R(s)(a)G3(s)__G3(s)+G1(s)传递函数G1+G3解:

(b)求系统的传递函数G2G3(s)1+G2HG21=R(s)G+2H1+G1G2C(s)1+GH2G1(s)1+G1H2__G2(s)21+G2H1G2G1+G2HG1(s)C(s)3=R(s)1+G2H1H+G1G2H22(s)G3(s)+G2(s)_G(s)C(s)2_H(s)H1(s)1H(s)G 1(s)H2(s)2G21+G2H1C(s) R(s)_R(s)_G1(s)L2+L1G2(s)C(s)+R(s)(c)解: _G1G3G2C(s)G1G2C(s)G4(s)R(s)_++C(s)GG23G1+H(s)解:L1=-G1G2HL2=-G1G4HΔ=1+G1G4H+G1G2HP1=G1G2P2=G3G2Δ2=1+G1G4HΔ1 =1C(s)G1G2+G2G3+G1G2G3G4 HR(s)=1+G1G2H+G1G4H

++H1H11+1-G3H1H1H1+G2C(s)=G1G2(1–G3H1)R(s)1+G1G2+G1H1–G3H1(e)R(s)

C(s)(d) R(s)解: (1)G1G2+_R(s)C(s)_G1G2HC(s)+解: (1)_R(s)C(s)-G1L3L4G2G3G4G1+G2G3-G4+HG2L1_L1L2C(s)(G+G)1R(s)=12 1+G2H(2)L1=-G2HP1=G1P2=G2(G1+G2)C(s)=R(s)1+(G1+G2)(G3-G4)C(s)(G+G)1R(s)=12 1+G2HΔ1 =1Δ2 =1(2)L1=-G1G3L2=G1G4L3=-G2G3L4=G2G4P1=G1Δ1=1P2=G2Δ2=1(G1+G2)C(s)=R(s)1+G1G3+G2G3–G1G4-G2G4

(f) R(s)解: (1)_R(s)C(s)_G1G2C(s)G1G21-G2L1L2+G1G1(1–G2)=G1G21+G1G2–G21+1-G2(2)L1=-G1G2L2=G2P1=G1Δ1=1-G2C(s)G1(1–G2)Δ=1+G1G2-G2R(s)=1+G1G2–G2

C(s)R(s)=2-12求图所示系统的传递函数

C(s)C(s),。 R(s)D(s) 解:(a)

C(s)R(s)L1=G2H2L2=-G1G2H3R(s)__H1(s)G1(s)L2D(s)+C(s)G2(s)+L1H2(s)H3(s)

P1=G1G2Δ1=1G2G1C(s)=R(s)1-G2H2+G1G2H3C(s)L=GH122L2=-G1G2H3P1=G2Δ1=1D(s)P2=-G1G2H1C(s)G2(1-G1H1 )=D(s)1-G2H2+G1G2H3 Δ2=1

(b)求:C(s)C(s)R(s)D(s)R(s)Gn__G1H+G2+D(s)C(s)解:L1=-G1G2L2=-G1G2HP1=G1G2Δ1=1G1G2C(s)=R(s)1+G1G2H+G1G2P1=GnG2Δ1=1P2=1Δ2=1+G1G2HC(s)=1+GnG2+G1G2HD(s)1+G1G2+G1G2H

2-13求图所示系统的传递函数

C(s)E(s),。 R(s)R(s)

(a)求:C(s)E(s)R(s)R(s)R(s)E(s)_G1L2_+L1G2G3C(s)L1=-G2L2=-G1G2G3解:P1=G2G3Δ1=1P2=G1G2G3Δ2=1C(s)G2G3+G1G2G3R(s)=1+G2+G1G2G3P1=-G2G3Δ1=1P2=1Δ2=1+G2C(s)-G2G3+1+G2R(s)=1+G2+G1G2G3

C(s)(b)求:C(s)E(s)R(s)R(s)R(s)G1E(s)G2--G3G4+G5解:L1=-G3G4L2=-G2G3G5P1=G1G5Δ1=1GGG+GGP2=G2G3G5Δ2=1C(s)=12515R(s)1+G2G3G5+G3G4P1=G1G5Δ1=1P2=1Δ2=1+G3G4E(s)G1G5+(1+G1G5 )R(s)=1+G2G3G5+G3G4

2-14求图所示系统的传递函数

C(s)E(s)C(s)X(s),,,。 R(s)R(s)D(s)E(s)G4(s)2-14解:R(s)E(s)G(s)1-L1=-G1G3G2(s)+X(s)C(s)G3(s)+D(s)L2=-G2G3P1=G1G3Δ1=1P2=G2G3Δ2=1P3=G1G4P4=G2G4P1=1

2-15求图所示系统的传递函数

Δ3=1Δ4=1Δ1=1C(s)(G1+G2)(G3+G4)R(s)=1+G3(G1+G2)E(s)1=R(s)1+G3(G1+G2)X(s)C(s)=G(s)2E(s)D(s)=1

C1(s)C1(s)C2(s)C2(s),,,。 R1(s)R2(s)R1(s)R2(s)解:求C1(s)R1(s)R1(s)+-G1H2G2H1G3C1(s)+R2(s)G62G5L1=G1G2G4-L2=-G1G4G5H1H2L3=-G4Δ=1-G1G2+G1G4G35H1H2+G4 -G1G2G4P1=G1G2G3Δ1=1+G4G1G2G3(1+G4 )C1(s)R1(s)=1+G4+G1G4G5H1H2-G1G2-G1G2G4

C(s)L1=G1G2L2=-G1G4G5H1H2L3=-G4Δ=1-G1G2+G1G4G5H1H2+G4 -G1G2G4P1=G4G5G6Δ1=1-G1G2G4G5G6(1-G1G2)C2(s)=R2(s)1+G4+G1G4G5H1H2-G1G2-G1G2G4C2(s)求R(s)2

C1(s)求R(s)L=GGL2=-G1G4G5H1H21122L3=-G4Δ=1-G1G2+G1G4G5H1H2+G4 -G1G2G4Δ1=1P1=-G1G2G3G4G5H1C1(s)-G1G2G3G4G5H1R2(s)=1+G4+G1G4G5H1H2-G1G2-G1G2G4C2(s)求R1(s)L1=G1G2L2=-G1G4G5H1H2L3=-G4Δ=1-G1G2+G1G4G5H1H2+G4 -G1G2G4Δ1=1P1=G1G4G5G6H2C2(s)G1G4G5G6H2=R1(s)1+G4+G1G4G5H1H2-G1G2-G1G2G4