2018海南省中考数学试题(含答案及解析版) 下载本文

范文.范例.参考

(1)由题意可得

∴抛物线解析式为y=﹣x2+2x+3;

,解得,

(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴F(1,4),

∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0),

∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4; ②∵点P在线段AB上, ∴∠DAQ不可能为直角,

∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1, ∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得∴Q(1,4);

ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3), 设直线AQ的解析式为y=k1x+b1, 把A、Q坐标代入可得

,解得k1=﹣(t﹣3),

,解得

设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t, ∵AQ⊥DQ,

∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=

WORD格式整理版

范文.范例.参考

当t=

时,﹣t2+2t+3=

当t=

时,﹣t2+2t+3=

∴Q点坐标为(,)或(,);

综上可知Q点坐标为(1,4)或(,)或(,).

【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.

WORD格式整理版